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A generalized version of the VoroneDelaunay method is used to study relatively large intermolecular voids

in a model of the hydrated DMPC bilayer, obtained from all-atom Monte Carlo simulation. Application of
the original version of the method for molecular systems has been hampered by the fact that these systems
geometrically represent ensembles of partially overlapping spheres of different radii. The generalized version
of the method is based on using the additively weighed Voronoi diagram, representing the locus of spatial
points being equally far from the surface rather than the center of the corresponding pair of atoms. This
version of the VoronoiDelaunay method can be readily used to reveal and analyze voids accessible for
probes of different radii even in rather complex molecular systems. When the properties of the voids present
in the simulated DMPC membrane are investigated, their shape, size, and orientation have been analyzed in
detail in the different regions of the membrane located at different depths along the membrane normal axis.
The characteristics of the voids are found to be different in different regions of the bilayer, namely (i) at the
middle of the membrane, in the region of the hydrophobic lipid tails, (ii) in the region of the hydrophilic
zwitterionic headgroups, ar(di) in the region of the bulklike water adjacent to the bilayer. The largest and
oblong voids are found in the middle of the membrane, with a preferred orientation that is parallel to the
bilayer normal axis. A clear correlation between the orientation of the voids and the orientation of the lipid
chains is observed. In the bulk water region the fraction of the empty space is even higher than at the middle
of the membrane; however, here the voids are distributed more uniformly. Finally, in the high-density region
of the hydrophilic headgroups the voids are found, on average, smaller than in the other parts of the system.

Introduction for analyzing different structural aspects of various condensed

8—22
Traditional objects of the structural application of the SYStems.

Voronoi-Delaunay method in the field of physics of condensed 1 "€ a@pplication of the method to molecular systems (e.g.,
matter are the models of systems that are geometrically mplecular _Iqu|ds, solutllqns,. polym_ers, .bllologlcallmolecules)
represented as ensembles of balls of equal radii (e.g., varioudnight require some modlflpatlons of its orlgllnal version, because
condensed phases of atomic systems). The applicability of thethese systems often consist of atoms of d|ffere_nt sizes. Further-
initial mathematical premises of the metR@ds also limited more, atoms connected by a chemical bond in these systems
to this case. The method has indeed been used to analyze varioddSu@lly approach each other considerably closer than the sum

properties of systems of this type at the molecular level, such of their van der Waals radii. Therefore, molecul'ar systems can
as the local order in noncrystalline packirfigé! extended (i.e., ~ 9eometrically be regarded as ensembles of partially overlapping
intermediate range) structural correlatidAsi® percolation and P2l of different radii. In analyzing the properties of the empty
properties of the interatomic void&;17 etc. The Voronok interatomic space in these systems, we also have to take the
Delaunay method is still widely applied in its classical form @POVe factors into account. o

One of the important problems of the application of the

* Corresponding author. E-mail: pali@para.chem.elte.hu. method for molecular systems is the determination of the region
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of space that can be assigned to a given atom. The Voronoiinteratomic voids in various syster#s!”-2%including biological
polyhedron can only be used for this purpose in systems of ones*

atoms of equal size, because it neglects atomic radii. Thus, in  Hydrated phospholipid membranes are rather complex, aniso-
systems containing atoms of noticeably different sizes, the tropic and highly inhomogeneous molecular systems, in which
surface of the Voronoi polyhedron of a large atom can be partly the analysis of the properties of voids cannot be reliably done
or even fully inside the van der Waals sphere representing theby the original version of the VoroneiDelaunay method. The
atom, and hence even a part of this van der Waals sphere carnvestigation of the properties of the voids in hydrated phospati-
be assigned to other atoms. To avoid this problem, the original dylcholine membranes is, however, of particular importance,
Voronoi polyhedron has been proposed to be substituted by othetecause these molecules, such as dimyristoylphosphatidylcholine
constructions that can take atomic sizes also into account. As(DMPC) and dipalmitoylphosphatidylcholine (DPPC), are the
the simplest way of overcoming this problem, it has been Main components of the membranes of the eukaryotic cells.
proposed to divide the space between atomic pairs by the planed\lthough the transport of molecules across biological mem-
passing between the atomic surfade this case, the faces branes is usually assisted by various channel-forming proteins,
of the polyhedron constructed do not intersect the surface of Several small, uncharged molecules (e.g, GO, CQ, NO)

its central atom. However, this idea did not become widely used, €@n permeate through the membrane simply by diffusion.
because the polyhedra constructed in this way do not provide aComputer S|r_nulat|or_1 investigation of this diffusion process is,
correct tessellation of the space (i.e., they can overlap each!'OWeVer, seriously hindered by the extreme computational effort
other as well as can have gaps between them). As a fur,[herrqulred by such calculations. To our knowledge, the_ diffusion
improvement, the use of the radical tessellation (called also the'orOfIIeS of moleculles across a hydrated membrang bilayer have
poweP* or Laguerre tessellati@hin mathematics) has been only been determined once by computer simulation methods,

proposed®?’ This tessellation can be used to correctly divide in the pioneering works of Marrink and Berendséd®Indirect

space among the atoms according to their size. However, despiténformatIOn on the permeability of the membrane for various

its interesting mathematical propertgshe physical meanin penetrants can be obtained from computer simulation by
. g mathe prop pny 9 calculating the free energy profile of the penetrants, i.e., the
of this tessellation is not obvious. Therefore, the use of the

Voronoi S-tessellatiol!-**seems to be more appropriate for this thermodynamic driving force of their diffusidii. ® Furthermore,

. i . ) ._the properties (e.g., size, shape, and orientation) of the inter-
purpose. In construct_lng th.'s tess_ellatlon, the distance of a Spatlalmolecular voids in the membrane are also obviously related to
point from an atom is deflned. simply as the shortest dlst.ance the membrane permeability, as the possible presence of pre-
from its surface. For spherical particles, the Voronoi S- (5 meq channels can largely facilitate the diffusion of the
tessellation coincides with the known additively weighed qecyles of appropriate size. The properties of the voids in a
Voronoi diagran®! however, it can also be defined for bodies lipid bilayer have, to our knowledge, only been analyzed once,

of other shapes:** Some peculiariti€$** and mathematical jn the fully hydrated DPPC bilayer by Marrink, Sok, and
several previous works. grid) for locating the voids in the systetf.

It should be noted, however, that the determination of the G ic C f the V/  Del Method
Voronoi S-tessellation is far from being obvious. Thus, several eometric or?cepts 0 t. e Voronot-Delaunay Met 0.
attempts have been made to find appropriate algorithms for this ~ System of Discrete Points or Atoms of the Same Sizén
problem. Some authors have only considered the problem inthis section we recall the main notions of the original version
two dimension$7-3° which, however, does not display some ©f the Voronoi-Delaunay method, in which the object of the
important peculiarities of the 3-dimensional case. The 3D case Study is a three-dimensional system of discrete points (centers
is discussed in detail by W# and by Richard et & However of atoms), or atoms of equal radif. The first construction of
these studies are restricted to the determination of the Voronoithe method is the Voronoi polyhedron, i.e., the region of space
S-regions. Goede et al. have used this method to describe thdVhere all points are closer to the center of a given atom than to
shape of the surface of complex molecufés some previous the center of any other atom. The Voronoi polyhedra constructed
papers we have presented another algorithm and used it for thefor all atoms of _the system form a mosalc, called the Voronoi
calculation of the Voronoi S-networR:3° However, this algo- tess_ellatlon, which covers the space vy|thout overlaps or gaps.
rithm proved to be inefficient for larger models. A specific Anllmportant property of the Voron9| tes;ellatlon Is that it
algorithm for a numerical determination of the S-network in defines quadruplets of mutually neighboring atoms, whose

systems consisting of straight lines and spherocylinders has als&)amcular feature is that the sphere circumscribed around them

been describe® Recently. we have develoned a novel algo- does not contain any atomic centers. Moreover, the sphere
. s Y, velop . 99" inscribed among the atoms of such quadruplets is empty, i.e.,
rithm for constructing the 3D Voronoi S-network in large does not overlap with any atoms of the system. Such a
models® )

quadruplet of atoms determines a tetrahedron, called the

Another important problem related to the Voronoi analysis Delaunay simplex. Similarly to the Voronoi polyhedra, the
of molecular systems is the investigation of the properties of pelaunay simplexes constructed for the entire system also form
the interatomic voids. The analysis of the interatomic cavities, a mosaic covering the space without overlapping and gaps. This
voids, and pockets differs somewhat from the determination of mosaic is called the Delaunay tessellation. Thus, the Delaunay
the volumes assigned to given atoms. This analysis cansimplexes can be regarded as the “bricks” composing the empty
conveniently be done by using the Delaunay simplexes deter-interatomic space in an atomic system.
mined by four mutually neighboring atoms. Such quadruplets  The set of all vertexes and edges of the Voronoi polyhedra
of atoms are the simplest elements of the structure in the three-forms a singly connected network, called the Voronoi network.
dimensional space, each of them determining an elementaryThe Voronoi network is a geometric construction that can be
cavity. Any complex void can be composed by such simplex conveniently used in analyzing spatial structural correlations
cavities. This property of the Delaunay simplexes has success-of the interatomic voids. Each vertex (site) of the Voronoi
fully been used to solve various problems in the analysis of network corresponds to one of the Delaunay simplexes, being
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are required as for the use of the classical Voronoi netwbrk.
Thus, the coordinates of the network sites should be kept in
the array{ D}, whereas their connectivity (i.e., the bonds of the
network) is stored separately, in arggyD} . Because each bond
determines the bottleneck between a pair of network sites, it is
useful to have a special arrgyr,} containing the radii of the
bottlenecks. The radii of the interstitial spheres, each of them
corresponding to a network site, are stored in afigy. The
algorithm proposed by @3 provides the values ofR,} and

{R} directly from the determination of the network. The
information needed to conveniently work with the Delaunay
Figure 1. Two-dimensional illustration of the Voronoi regions in a S_-SImplexeS, ':e" the lists of the atom_s determining the network
system of balls of the same size (left) and in that of balls of different SIt€S, is contained in the arrgyDA}. Finally, the array{ Ve},

sizes (right). The edges of the Voronoi regions (i.e., Voronoi polyhedra containing the values of the empty volume inside the Delaunay
and Voronoi S-regions in the systems shown on the left and right panel, S-simplexes, provides the information needed to analyze the

respectively) are shown by thick lines, and those of the Delaunay volume of the voids. These volumes can be calculated using
simplexes are indicated by thin_lines. In the_right panel dashed lines the array{DA} together with the coordinateA} and radii
?;;rfé tg: ser?gv?/ﬁ ?rI ttpg fgf?ggg)na' Voronoi polyhedra of the system rp of the atoms of the system studied.
' Some Peculiarities of the Voronoi S-Tessellation for

the center of its circumscribed sphere. Each edge (bond) of theEnsembles of SpheresThe Voronoi S-tessellation in systems
Voronoi network represents a fairway passing through the of spheres of different sizes has, in general, some specific
narrow bottleneck between three atoms from one site to the features that can hamper its use in the analysis of the interatomic
neighboring one. The basic constructions of the original space’* However, these features are usually not manifested in
Voronoi—Delaunay method are illustrated in the left panel of systems corresponding to physically sensible arrangements of
Figure 1 for a system of equal spheres. molecules, and hence the methodology can directly be applied

System of Atoms of Different Sizes.Consider now the to most of the physical systems. Nevertheless, the peculiar
generalization of the VoroneiDelaunay method that makes it features of the S-tessellation are absent from the classical
suitable for the analysis of the empty interatomic space in Voronoi tessellation, which can make the analysis of the
systems consisted of atoms of different siZ&%:3*The basic interatomic space difficult, and hence, the specific arrangements
construction of the generalized method is the Voronoi S-region, of the atoms corresponding to these peculiarities should be
i.e., the region of space where all points are closer tstitace marked. These possible features of the Voronoi S-tessellation
of a given atom than to that of the other atoms of the system. are discussed in detail elsewhéfe? therefore only a brief
For atoms of the same size, this region obviously coincides with summary of them is given here.
the Voronoi polyhedron. In the case of atoms of different sizes,  The main reason of the unpleasant peculiarities of the Voronoi
however, the faces of the Voronoi S-region are pieces of second-S-tessellation is that, unlike in the case of the original VVoronoi
order surfaces rather than planes. Although the metrics andtessellation, the Voronoi surface dividing the space between two
topology of the Voronoi S-region can also characterize the local atoms is now a second-order curve (hyperboloid) rather than a
environment of its central atof,its most important property  plane. Therefore, some of the Voronoi S-regions can be
is to determine the region of space that can be naturally assignedorincipally different from a polyhedron. In particular, such
to a given atom. The Voronoi S-regions constructed for all atoms regions can have only two faces, and hence no vertexes. More
of the system form a mosaic that covers the space without complex cases are discussed in detail elsewker8uch
overlapping and gaps. This mosaic is called the Voronoi peculiarities are manifested if a small atom is located in a narrow
S-tessellation. gap between larger ones. This example shows that the Voronoi

Similarly to the original Voronoi tessellation, the Voronoi S-network can even be disconnected. In such cases it has to be
S-tessellation can also define quadruplets of mutually neighbor-found out how to connect separate parts of the Voronoi
ing atoms, the sphere inscribed among which is empty. Thus, S-network. In the classical approach, the Voronoi network is
each quadruplet determines a Delaunay S-simplex and representsingly connected and connects all the simplex cavities present
an elementary cavity between the atoms. The Delaunay S-inthe system. Our experience shows that real molecular systems
simplexes usually coincide with the classical Delaunay sim- also possess singly connected Voronoi S-networks. Nevertheless,
plexes defined for the atomic centers; however, depending onthe singly connectivity of the S-network should be controlled
the atomic radii, they can also differ from thémFurther, in the stage of the network constructith.
similarly to the classical case, the Voronoi S-network can be  Another possible peculiarity of the Voronoi S-network is that
defined as the set of the vertexes and edges of all the Voronoiits two different sites can correspond to the same four atoms.
S-regions of the system. Each vertex (site) of the Voronoi In this case each site corresponds to its own interstitial sphere,
S-network is the center of an interstitial sphere, corresponding and hence the corresponding Delaunay simplex contains two
to one of the Delaunay S-simplexes, whereas each edge (bondinscribed spheres. This peculiarity can, however, easily be taken
of the network is a fairway passing through the bottleneck into account in the analysis of the Voronoi S-network.
between three atoms from one network site to the neighboring The next problem is that the Delaunay S-simplexes, unlike
one. The Delaunay S-simplexes corresponding to neighboringtheir classical analogues, can overlap each other in certain
S-network sites have one face (i.e., three atoms) in common.conditions. The existence of such “internal” S-simplexes
The main constructions of this generalization of the Vorenoi  introduces an error in the calculation of the volume of the
Delaunay method are illustrated and compared to those of theinteratomic voids. These simplexes can readily be distinguished
original method in the right panel of Figure 1. when constructing the Voronoi S-network. However, specific

When the properties of the empty space are analyzed in termsatomic arrangements leading to this peculiarity appear with
of the Voronoi S-network in a system, the same sets of data rather low probabilities in physically relevant disordered mo-
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Figure 2. lllustration of the fact that the Voronoi S-network does not
change if the radii of the balls (atoms) are decreased by the same value
d.

lecular systems, and hence the above error is usually marginal.
This can be verified by comparing the sum of the volumes of
the calculated Delaunay S-simplexes with the total volume of
the system. In the analyses presented in this paper the difference
of the two volumes has always been found to be below 0.01%.

Consideration of Atomic Overlapping

Mathematically, the Voronoi S-network can be determined
over the entire space, also inside overlapping atoms. However,
when the interatomic space is analyzed, only the part of the
network located outside the atoms has to be known. Hence, the
problem of overlapping of the chemically bound atoms can
easily be solved. By definition, each bond of the Voronoi
S-network is the locus of points located at equal distance from
the surfaces of the nearest three balls (atoms). This locus does
not change if we change the radii of the corresponding balls by
the same valué (see Figure 2). Similarly, the S-network site
(i.e., the common vertex of the Voronoi S-regions) remains at
the same position if the radii of the corresponding four balls
are changed by the same value. This particular feature of the
Voronoi S-tessellation allows the construction of a new, reduced
system by decreasing the radii of all spheres of the initial system
by a constant valud to avoid their overlapping. The Voronoi
S-network of the system investigated can then be constructed
on the reduced system of nonoverlapping balls. The data
required to describe the S-network (i.e., the coordinates of
network sited D}, the table of connectivitfDD}, and the table
of the incidence of sites and atorfiBA}) fully coincide for
the initial and the reduced system. The values of the radii of

the interstitial spheregR} and bottleneck§Ry} for the initial Figure 3. Two-dimensional illustration of the determination of the
system are simply related to the corresponding val&g$ and Voronoi S-network and Delaunay S-simplexes in a molecular system.
{Ry} of the reduced system & = R + dandR, = R, + d. Top: the system to be analyzed, represented as an ensemble of partly

- L ... overlapping balls of different radii. Middle: reduced system, obtained
Obviously, some of these values can be negative in the initial by decreasing the radii of all of the balls by the same vaiu@he

system, indicating that the corresponding sites or bonds arey;,onej S-network obtained in the reduced system is also shown (thick

completely covered by the atomic spheres and hence can baines). Bottom: parts of the Voronoi S-network located outside the
neglected in the analysis. A similar procedure can be applied if atomic spheres (thick lines) and Delaunay S-simplexes (thin lines) of

only those regions of the interatomic space are of interest in the system.

which the radius of the bottlenecks exceeds a given limiting ) ) ) )

value and hence is accessible for a probe of this radius. TheOf the atomic spheres locally, i.e., when a given site of the

procedure of determining the part of the Voronoi S-network S-networkiis calculated, only the overlapping of the correspond-

situated in the empty space between the atoms is illustrated inind four atoms is eliminatetf. Overlapping cannot be eliminated

Figure 3. when one of the atoms is located fully inside another one.
Finally, it should be noted that although the above procedure However, this case is qf no practlcal_ interest, beca_use the internal

proposed to avoid atomic overlapping by decreasing all the oM does not participate at all in the formation of empty

atomic spheres of the system is rather simple, it is not always interatomic space and thus can be neglected.

feasible in this form. Obviously, the value @tannot be smaller Determination of the Interatomic Voids

than the radius of the smallest atom of the system, whereas the

system might contain large atoms, the overlapping of which  The empty space in a three-dimensional system of atoms is

exceedd. This problem can be avoided by reducing the size a complex, singly connected region confined by the atomic
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Figure 4. Two-dimensional illustration of th& coloring of the Voronoi S-network sites in the system shown in Figure 3. Left: all interstitial
spheres of the system. Black dots indicate the Voronoi S-network sites corresponding to interstitial spheres larger than the probe shown between
the two figures. Right: interstitial spheres having a radius larger than that of the probe.

surfaces. Any interatomic void to be distinguished is a part of in a given cluster, all S-simplexes composing this void are also
it and depends on the detection criterion. A natural physical known (see Figure 5b). Whilst the cluster of the S-network sites
way of defining voids is through the value of the radius of a and bonds represents the “skeleton” of a void, the union of the
probe (test sphere) that can be put in the given void. Thus, voidsempty volumes of the corresponding S-simplexes form its
are the parts of the interatomic space that are accessible for &body” (see Figure 5c). The void is confined by the surfaces of
given probe. Therefore, when voids are discussed, the radiusthe atomic spheres and flat faces of the corresponding S-
Rorobe Of the corresponding probe should always be indicated. simplexes; and the probe can move along the S-network bonds
The number, size, and morphology of the voids in a given between the sites involved in this void. The rest of the empty
system depend on the probe radius: though almost the wholespace in the system is inaccessible for this probe. The proposed

empty interatomic space is accessible for a small probe, only representation of the voids provides a quantitative basis for the
the most spacious cavities represent voids for larger ones.  analysis of various characteristics of them.

Interstitial Spheres (R; Coloring). Interstitial spheres are
simple but important elements of the empty interatomic space. gjm ey As shown in the previous subsection, in determining

As has been discussed in a previous section, these sphereﬁqe volume of the voids present in a system the volume of the

represent real empty volume between the atoms. Therefore, theempty part of the corresponding S-simplexes has to be calcu-

values of their radii indicate the length scale of the voids present lated. At first glance, it seems to be a rather straightforward

in the system. Because each site of the Voronoi S_—network IS task; the volume to be determined is simply the total volume
the center of one of these spheres, once the coordinates of the

network site D} as well as the radii of the interstitial spheres of the simplex minus the _volu_me occupied by the parts of Its
{R} are known, the location of the large and small voids can ovvln e:]toms. This calcu_la}tlon IS ba;edlon the assumption that
readily be determined. For example, the largest voids can simplyon.y the atoms determining an S-S|mp €x can occupy any part
be distinguished by marking (coloring) the S-network sites the of its v_olume. However, l_JeS|des their own atzoms, S-simplexes
corresponding interstitial spheres of which have a radius IargerOften .|nvolve several alle.n atomslas Mél.ﬁ The vo!ume
than a limiting valueRin. This procedure of distinguishing the occup|ed by these ato_”?s In an S'S'mp'e?‘ is rather difficult to
sites of the Voronoi S-network by the radius of the correspond- tgke Into account. Addltlopal problems.arlse from the overlap-
ing interstitial spheres, called the coloring the network45° ping of atoms inside the simplexes, which should also be taken
is illustrated in Figure 4. into aqcount to calculate the empty volumg correctly. Althoggh
System of Bottlenecks. Determination of Voids (R Color- analytlca_l formula_s can be derlyed for t_reatlng double and triple
ing). A more comprehensive analysis of the voids and inter- ©Verlapping, multiple overlapping, which appears rather often
atomic channels requires also the consideration of the bottle-fOr the alien atoms, is analytically almost untreatable. Due to
necks of the empty space, i.e., the bonds of the Voronoi these dlff.ICU|tIes,. ngmencal calculation of j[h.e empty volume
S-network. If a probe can move along an S-network bond (i.e., ©f @n S-simplex is, in general, far more efficient and accurate
pass through a bottleneck) then both of the network sites than its analytical determination. Such a calculation can simply
connected by this bond are also accessible 8t Thus, the e done by filling the simplex by sample points (arranged either
regions accessible for a given probe can be determined byrandomly oralong a grid) and determining the fraction of points
distinguishing the bonds, the bottleneck radius of which exceedslocated outside the atoms. This procedure can be done rather
a given limiting value. The clusters consisting of these bonds efficiently, because the list of the alien atoms potentially
represent the fairways of the empty interatomic regions along overlapping with the simplex can be readily defined beforehand,
which a given probe can be moved. Distinguishing bonds of using the Voronoi S-tessellation of the system. Namely, the
the Voronoi S-network according to their bottleneck radii is distance of these atoms from the Voronoi S-network site

Calculation of the Empty Space of the Delaunay S-

called theR, coloring of the network451 The use of theR, corresponding to the S-simplex considered cannot be larger than
coloring of the Voronoi S-network in determining the voids in  Rsph + Rmax WhereRgpn is the radius of the sphere inscribed
a system is illustrated in Figure 5. among the atoms determining the S-simplex, &ydx is the

The description of the voids as clusters of S-network bonds radius of the largest atom present in the system. The accuracy
and sites is very useful in locating the large voids in the system of the calculation can be improved by increasing the number
investigated. However, when a more detailed analysis of the of the test points used, which, however, increases also the
voids is done, their volumes should also be calculated. This computational cost of the calculation. In the analyses reported
can be done with the help of the Delaunay S-simplexes. in the present paper these calculations have been done with an
Knowing the sites of the Voronoi S-network that are involved average accuracy af2%.
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a) b)

Figure 5. Two-dimensional illustration of th&, coloring of the Voronoi S-network sites in the system shown in Figure 3. Thick lines indicate the
bonds of the Voronoi S-network, the bottleneck radius of which exceeds the radius of the probe shown between the two top figures. Top left: parts
of the Voronoi S-network located outside the atomic spheres. The location of the bottleneck along two selected bonds is shown by arrows. Top
right: detected clusters &,-colored S-network bonds, and the corresponding Delaunay S-simplexes. Bottom: voids corresponding to the clusters
of Ry-colored S-network bonds.

Properties of Voids in the Simulated DMPC Membrane

The detailed investigation of the properties of voids is of
particular interest in hydrated membranes formed by ampiphilic
lipid molecules. These membranes, consisting of hydrophobic
and hydrophilic regions as well as an aqueous phase hydrating
the lipid molecules are highly anisotropic and inhomogeneous
systems, and hence the voids present in such systems are
expected to show a rather complex behavior. The characteristics
of these voids influence the properties of the membranes in
several respects. Thus, the diffusion of small molecules in the
membrane, and hence the permeability of the membrane depend
strongly on the size, shape, and orientation of its voids. Because
phospholipid molecules, such as DMPC and DPPC are the main
components of the membranes of eukaryotic cells, the mem-
branes built up by such molecules are also of biological
relevance; any investigation of the structure and function of the
real biological membranes of rather complex structures requiresFigure 6. Snapshot showing an equilibrium configuration of the atoms
detailed understanding of the properties of simple phospholipid in @ simulated fully hydrated DMPC bilayer.
membranes. Although phospholipid membranes have been
intensively studied by computer simulation methétig2.53-62 2033 TIP3P* water molecules. The bond lengths and bond
the properties of the voids in such membranes have been theangles of the molecules are fixed at their equilibrium values,
subject of only a few studies, focusing primarily on the Whereas torsional flexibility of the DMPC molecules is intro-
distribution of the empty space across the membfafE49 duced. The sample analyzed here consists of 1000 independent

System InvestigatedThe system investigated in the present configurations, each of them separated byri@v Monte Carlo
study is a computer model of the fully hydrated DMPC bilayer, steps from the previous one. Details of the simulation of the
as obtained from a recent all-atom Monte Carlo simulation, System and a thorough analysis of its molecular level structure
performed on the isothermaisobaric (\,p,T) ensemble under ~ are given in our previous papef&$62The snapshot of an
physiological conditions (i.e., at 1 atm and 310%)Each of instantaneous sample configuration of the system is shown in
the two membrane layers contain 25 DMPC molecules, de- Figure 6.
scribed by the CHARMMZ22 force field optimized for proteins Main Characteristics of the Interatomic Space.R; Distri-
and phospholipid moleculé3,and the bilayer is hydrated by  bution As mentioned above, the length scale of the voids in a
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Fraction of the Empty Space across the Membrafee
qualitative conclusions drawn from the snapshots of Figure 8
on the distribution of the empty space along the membrane
normal can be quantified by calculating the profile of the fraction
of the empty volume across bilayer. This profile can be
calculated in several different ways, even without using the
Voronoi—Delaunay method (e.g., by placing sample points in
the system either randomly or along a grid, as done by Marrink
et al?9). However, having already determined the Voronoi
S-network and the Delaunay S-simplexes of the system, the
profile can readily be calculated. Thus, the empty volume in a
0.00 : . ‘ ] given slice of the system along the membrane normal axis

0.5 0.0 0.5 1.0 15 2.0 can be estimated as the sum of the empty volumes of the
R/A Delaunay S-simplexes located in this layer. The position of an

Figure 7. Distribution of the radii of the interstitial spher&spresent S-simplex can simply be estimated as the position of the

in the simulated fully hydrated DMPC bilayer. Negative valuegof ~ corresponding Voronoi S-network site (i.e., the total empty
correspond to the regions completely covered by the atoms. volume of an S-simplex is assigned to the membrane layer in

which the corresponding S-network site is located). This

system is set by the radii of the interstitial spheres. Figure 7 approach assumes that the characteristic size of the Delaunay
shows the distribution of the radii of these spheResn the S-simplexes of the system is considerably smaller than the length
lipid bilayer simulated. As is seen, the distribution is rather of the edge of the basic box along which the profile is calculated.
symmetric; it is not extended above 1.8 A, indicating that the This condition is safely satisfied in the case of the system
system does not contain particularly large voids. The highest analyzed here.
fraction of the interstitial spheres has a radius of about 0.6 A,  The obtained profile of the fraction of empty space, sym-
indicating that the bilayer studied is a rather dense system. It metrized over the two sides of the membrane, is shown on the
should be noted that the negatiRevalues are assigned to the top panel of Figure 9. Following the convention used in our
interstitial spheres of the reduced model, which, after acquiring previous papef> the system is divided into three separate
the initial atomic sizes, appear completely inside the atoms, asregions in the following analyses. Thus, region 1 is located at
discussed in a previous section. Real voids correspond to thethe middle of the membrane, # < 8 A (z= 0 being in the
positive R values. The sharp peak appearing between 0.5 andmiddle of the bilayer); region 2 covers the layer at &Az| <
0.6 A at the position of the main broad peak of the distribution 24 A, whereas region 3 is located farthest from the membrane
is due to the intramolecular voids of DMPC molecules (i.e., to interior, at|z] = 24 A. These regions roughly coincide with the
the spheres inscribed between the atoms belonging to the samapolar hydrocarbon phase of the bilayer, the region of the
molecule). hydrophilic headgroups of the DMPC molecules, and the region

Spatial Distribution of the Interstitial SphereBigure 8 shows  of bulklike water, respectivel§: As is seen, the largest fraction
the interstitial spheres, the radii of which exceed 1.6 and 1.2 (almost 50%) of the space is found to be empty in the aqueous
A, respectively, in the sample configuration shown in Figure phase of the system, whereas the fraction of the empty space is
6. The use of the former limiting radius value leads to the few clearly the smallest in the regions of the hydrophilic DMPC
large voids of the system (see Figure 7), whereas with the choiceheadgroups, being as low as 30% in the middle of this region.
of R > 1.2 A a number of smaller voids are also detected. Both The obtained profile is in good agreement with the similar
choices ofR demonstrate that the population of large voids is profile estimated by Marrink et al. in the hydrated bilayer of
considerably higher at the center of the bilayer and in the DPPC by setting a grid of sample points in their systém.
aqueous phase than in the region of hydrophilic headgroups of The above approach can readily be used to calculate also the
the DMPC molecules, where only a few large voids can be partial profiles of the fraction of empty volume (in which only
detected. This observation is in accordance with the fact thatthe volume belonging to large enough voids is taken into
the density profile of the system goes through a clear maximum account) across the system. Such profiles can simply be
in the region of the lipid headgroups. determined by considering only the Delaunay S-simplexes the
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Figure 8. Interstitial spheres of a radius of at least 1.6 A (left) and 1.2 A (right) in the configuration shown in Figure 6.
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0.50 : ; : - bottlenecks (i.e., decreasing the valueRaknd more complex
’ | 1 | clusters are obtained. At a critical value of the probe radius the
system of the clusters becomes percolated; i.e., a large cluster
extending over the entire system arises, through which the probe
can pass from any part to any other part of the system. Finally,
when Ryope is zero, all the bonds of the Voronoi S-network
located in the empty space of the system are colored. Obviously,
the sites of the Voronoi S-network connecting contiguous bonds
are also involved in the cluster, because any probe that can pass
along an S-network bond fits also into the interstitial spheres
at both terminal sites of the bond. To find all places accessible
for a given probe in the system, the single sites of the Voronoi
S-network at which the radius of the interstitial sphere exceeds
the radius of the probe should also be taken into account, even
if the bottleneck radii of all the bonds emanating from this site
are smaller than this limiting value. Such voids consist of one
; ; | single simplex only. Note that once the clusters accessible for
Ri = 14 A the probe of a given size are distinguished by Rgecoloring
0.00 e L e procedure, and the single sites with the proper interstitial sphere
0 30 2 0 0 10 M 3 4 are also taken into account, the properties of the Voronoi
7 A S-tessellation guarantee that the system does not contain any
Figure 9. Profile of the fraction of the empty space (top), and partial other void accessible for this probe.

profile of the fraction of the empty space assigned to voids accessible Figure 10 shows the bonds of the Voronoi S-network whose

for a probe of the radius of 1.4 A (bottom) across the simulated fully . . . .
hydrated DMPC membrane. The dashed vertical lines indicate the bottleneck radius exceeds 1.3 A in the sample configuration

division of the membrane into three separate regions. shown in Figure 6. Similarly to the interstitial spheres revealed
by the R coloring of the system (see Figure 8), most of the

radius of the interstitial sphere of which is larger than a limiting S-network bond clusters representing the voids are also located

value. The partial profile obtained with the limiting radius value in the aqueous phase and in the middle of the membrane.

of Rorobe= 1.4 A'is shown on the bottom panel of Figure 9. As Nevertheless, the information extracted from fRgcoloring

is seen, contrary to the total empty volume, the highest fraction Of the S-network differs from that provided by # coloring,

of the space belongs in region 1 to voids accessible for a probe€ven if the clusters distinguished by the two methods almost

of this size. This finding, being also in qualitative agreement coincide for large enough probes.

with the results of Marrink et af? indicates that the empty As seen from Figure 10, the use of the probe radius of 1.3 A

space is distributed among a large number of rather small leads to a number of small clusters that are separated from each

cavities in the aqueous phase, and among a few more spaciousther; the probe can fit into any of the corresponding voids but

cavities in the middle of the membrane. cannot move from one void to another. To determine the critical
Interatomic Cavities as Clusters on the Voronoi S- probe radiusRi: at which the system of clusters becomes

Network. The voids accessible for relatively large probes in a percolated, we have repeated tRg coloring procedure by

system are of particular interest, as they form the widest channelssystematically decreasing probe radii. Due to the anisotropy of

and pores. As discussed in a previous section, these voids carthe system, however, the valueRyf;; differs when the clusters

be revealed by means of th&, coloring of the Voronoi are percolating only in lateral directions (i.e., along xrendy

S-network of the system, in which the bonds whose bottleneck axes) from the value describing percolation even along the

radius exceed a given limiting value Bfoneare distinguished. membrane normal axia For the lateral percolation we have

For large values dRyronethe procedure results in a small number obtained the value dR.;; = 0.803+ 0.016 A, whereas for the

of isolated clusters of the bonds, corresponding to the most complete percolation (i.e., also along the membrane normal axis)

spacious voids of the system. Considering also some narrowerthe much smaller critical probe radius valueRyfi; = 0.650+
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Figure 10. Right: clusters of the Voronoi S-network bonds having a bottleneck radius of at least 1.3 A in the configuration shown in Figure 6.
Left: a fragment of this picture shown on an enlarged scale.
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Figure 11. lllustration of the construction of the spherocylinder representing a given void. Left: the cluster of the Voronoi S-network sites representing
the void. The principal axis of the tensor of inertia of these sites is also indicated (see the text). Center: union of the interstitial sphedes centere
on the sites. Right: the obtained spherocylinder (drawn on the top of the interstitial spheres).

0.014 A has resulted. This rather large difference between thea characterizing the sphericity of the void, defined as
two critical radii is due to the fact that the region of the hydrated
DMPC headgroups is rather dense, and hence it contains fewer o= 2R @
and smaller voids than the other regions of the system. To 2R+ L
exclude the influence of the headgroup region, we have also
calculated the critical probe radius for the cluster percolation and the cosine of the anglg formed by the axis of the
along the membrane normal in the central membrane region ofspherocylinder and the bilayer normal azisespectively. The
the hydrocarbon lipid tails (i.e., region 1). The obtained value Vvalue of the parametex varies from zero (for infinitely long
of Ryt = 0.892+ 0.089 is now even slightly larger than the spherocylinders) to unity (for perfect spheres). To avoid the
value corresponding to the lateral percolation. However, it is arbitrariness of the void definition due to the choice of the probe
worth noting that all these critical radii are much smaller than radius Ryope We have calculated the above parameters with
the size of the smallest molecules, indicating that the DMPC seven different probe radii, starting froRpone = 1.0 A and
bilayer does not contain readily formed channels along which increasing the probe radius up to 1.6 A by a step of 0.1 A. This
any penetrant molecule could pass through the membrane.range ofRyone COvers the descending side of the peak of the
Therefore, the mechanism of the cross-membrane diffusion of P(R) distribution (see Figure 7), and hence only the relatively
small molecules involves the interaction between the penetrantlarge voids of the system can be detected in this way.
and the lipid molecules, as the penetrant can only move into Furthermore, voids of this size can be relevant for accommodat-
voids created in the membrane due to the thermal motion of ing a water molecule, because similar values are thought to be
the lipids and to the lipietpenetrant interaction, i.e., it has to  realistic as the effective water radius in polar biomolecular
push apart the lipid molecules to make its way through the interactions®®” The mean values 0f\oig, @, and cosy have
membrane. been determined in the three membrane regions separately. The
Analysis of the Void Shape.In our previous pap€i we dependence of the obtained average values on the probe radius
have proposed to represent the determined interatomic voidsin the three regions is shown in Figure 12. As is seen, all the
as spherocylinders. In finding the spherocylinders covering the three characteristics of the voids presented are noticeably
voids, optimally fitting procedures have been found to be rather different in the three regions of the bilayer. It should also be
time-consuming. Therefore, a method for the direct determina- noted that the relation of the mean values of the parameters
tion of the parameters describing the spherocylinders has beerpbtained in the different membrane regions is preserved for all
proposed® Here we briefly recall the main points of this probe sizes used; i.e., the results are stable to the void detection
method. A fictitious “mass” proportional to the empty volume criterion. Similar behavior has also been observed for several
of the corresponding Delaunay S-simplex is assigned to eachother void characteristi€s(e.g., the length. and radiusR of
site of the S-network cluster representing the void. In this way the spherocylinders) that are not presented here.
the voids of any complex shape are represented by a system of The results obtained for the mean volume of the voids are in
massive points. Then the tensor of inertia of the void is accordance with the qualitative picture seen from Figures 8 and
calculated using these fictitious masses. The axis of the tensorl0. Thus, the largest voids are clearly found to be located in
along which its principal value is minimal indicates the direction the central part of the membrane, whereas the voids located at
of the largest extension of the void and is taken as the axis of the region of the hydrated lipid headgroups are, on average,
the required spherocylinder. The lengths of the cylindrical part considerably smaller than those in the other parts of the
of the spherocylindel are calculated by projecting all the sites membrane. It should be noted that, despite the above results,
of the cluster to this axis, and the mean square deviation of the fraction of the empty space is found to be considerably
these projections is calculated from the fictitious center of mass smaller in the apolar region of the membrane than in the region

of the cluster. Finally, the radius of the spherocylindeis of bulklike water (see Figure 9), indicating that the empty space
unambiguously determined by the condition that the volume of is distributed in a considerably more ordered way among the
the spherocylinder should be equal to that of the void: hydrocarbon chains of the DMPC molecules than in the aqueous

phase. This conclusion is also in accordance with the fact that
the voids in region 1 are, on average, considerably less spherical
than in region 3.

It is also seen that though the obtain&@ois[(Rorobd CUrve
where the volume of the voi¥,eiq is the sum of the empty  is monotonic in regions 2 and 3, it goes through a minimum in
volumes of the composing Delaunay S-simplexes (i.e., the total the region of the membrane interior. The reason of this behavior
fictitious mass of the cluster). This procedure is illustrated in is the fact that the decrease of the probe radius, simultaneously
Figure 11. with the appearance of small voids, leads also to the fusion of

To characterize the size, shape, and orientation of the voidsthe voids that are separated for larger probe radii after a certain
present in the hydrated DMPC bilayer, we have calculated the point. Obviously, this fusion of the separated voids appears at
volume of the corresponding spherocylindgsig, the parameter  smaller probe radii values in systems containing smaller voids.

V= Rzn(L + gR) @)
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Figure 13. Profile of the average volume (top), sphericity parameter
pmbe/A (middle), and orientation (bottom) of the spherocylinders representing

the voids across the simulated fully hydrated DMPC bilayer. The dashed
vertical lines indicate the division of the membrane into three separate
regions.

Figure 12. Dependence of the mean volume of the voids (top), mean
value of the sphericity parameterof the spherocylinders representing
the voids (middle), and mean cosine of the angfermed by the axis

of the spherocylinder and the membrane normal aris the radius of

the probe used in the void detection criteri®y4pq in the three separate  phase is nearly isotropic, although a slight but deliberate change
membrane regions: squares, region 1 (hydrocarbon tails); circles, regionof [¢osyLis seen with changing probe radius. This dependence

2 (hydrophilic headgroups); triangles, region 3 (agueous phase). of [osy[on Rprobein region 3 is rather similar to that in region
2, indicating that the likely reason is simply that the definition
Therefore, the minimum behavior of th#&\id[(Ryrobgd CUrve of the separate membrane regions used here is rather arbitrary,

can also be expected in regions 2 and Rade values below and hence, due to the roughness of the membrane surface, parts
1.0 A. Indeed, traces of the presence of such a minimum canof the headgroups of several lipid molecules can also be located
already be seen on the curve obtained in region 3 below aboutin region 3, influencing the properties of the voids also in this

1.2 A region. Although this influence is usually rather small, it
In analyzing the average orientation of the voids it should becomes evident when it induces a slight orientational order
be noted that the angle can vary between®and 90, and among the voids otherwise oriented in a totally disordered way.
hence the value of cog scatters between 0 and 1. Thus, To analyze the change of the void characteristics along the
isotropic orientation of the voids corresponds tolitesy value membrane normal axisin more detail, we have calculated the

of 0.5 (indicated by a dashed horizontal line in Figure 12). The profile of Wyiql) [@[] and [¢osyOacross the membrane using
[¢os yOvalues larger than 0.5 indicate that the preferred the RyopeValue of 1.3 A. The position of a void is defined by
orientation of the voids is perpendicular rather than parallel to the fictitious center-of-mass of the corresponding S-network
the plane of the bilayer, whereB®sy < 0.5 indicates opposite  cluster. The obtained profiles, symmetrized over the two sides
orientational preferences. The strongest orientational orderingof the bilayer, are shown in Figure 13. The void volume profile
of the voids is seen in the middle region of the membrane for is in clear accordance with the density profile of the membfane,
all the probe radii used. Here the voids are aligned preferentially higher densities always correspond to the presence of smaller
parallel with the bilayer normal, and hence, also with theCC voids on average. The only deviation from this correspondence
bonds of the lipid hydrocarbon tait3.The fusion of the voids s that the peak of théV,.i[{2) profile at the middle of the
with decreasing probe radius makes this orientational preferencemembrane is noticeably sharper than the density minimum in
even stronger, as the obtain@bsy [{Ryond function increases  this region (see Figure 4 of ref 61). This deviation indicates
monotonically with decreasing probe radius below 1.3 A. A again that the empty space is considerably more ordered in the
similar but weaker orientational preference of the voids is seen middle of the membrane than in its outer parts. The comparison
in the region of the headgroups, in accordance with our previous of the obtainedV,q((2) and[d[{z) profiles shows that there is
finding that the preference of the lipid headgroups themselvesa clear and strong correlation between the average size and
for a parallel orientation with the membrane normal axis sphericity of the voids; i.e., larger voids are, on average,
also considerably weaker than that of the hydrocarbon lipid consistently less spherical than smaller ones. Thus, the most
tails 81 Finally, the orientation of the voids located in the aqueous spherical voids are located in the dense region of the headgroups.
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