
Morphology of Voids in Molecular Systems. A Voronoi-Delaunay Analysis of a Simulated
DMPC Membrane

Marina G. Alinchenko and Alexey V. Anikeenko
Institute of Chemical Kinetics and Combustion, Siberian Branch of the RAS,
Group of Supramolecular Structures, Institutskaya 3, R-630090 NoVosibirsk,
Russia, and NoVosibirsk State UniVersity, NoVosibirsk, Russia

Nikolai N. Medvedev and Vladimir P. Voloshin
Institute of Chemical Kinetics and Combustion, Siberian Branch of the RAS,
Group of Supramolecular Structures, Institutskaya 3, R-630090 NoVosibirsk, Russia

Mihaly Mezei
Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York UniVersity,
1 GustaVe L. LeVy Place, New York, New York 10029

Pál Jedlovszky*
Department of Colloid Chemistry, Eo¨tVös Loránd UniVersity, Pázmány Péter stny. 1/a,
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A generalized version of the Voronoi-Delaunay method is used to study relatively large intermolecular voids
in a model of the hydrated DMPC bilayer, obtained from all-atom Monte Carlo simulation. Application of
the original version of the method for molecular systems has been hampered by the fact that these systems
geometrically represent ensembles of partially overlapping spheres of different radii. The generalized version
of the method is based on using the additively weighed Voronoi diagram, representing the locus of spatial
points being equally far from the surface rather than the center of the corresponding pair of atoms. This
version of the Voronoi-Delaunay method can be readily used to reveal and analyze voids accessible for
probes of different radii even in rather complex molecular systems. When the properties of the voids present
in the simulated DMPC membrane are investigated, their shape, size, and orientation have been analyzed in
detail in the different regions of the membrane located at different depths along the membrane normal axis.
The characteristics of the voids are found to be different in different regions of the bilayer, namely (i) at the
middle of the membrane, in the region of the hydrophobic lipid tails, (ii) in the region of the hydrophilic
zwitterionic headgroups, and(iii) in the region of the bulklike water adjacent to the bilayer. The largest and
oblong voids are found in the middle of the membrane, with a preferred orientation that is parallel to the
bilayer normal axis. A clear correlation between the orientation of the voids and the orientation of the lipid
chains is observed. In the bulk water region the fraction of the empty space is even higher than at the middle
of the membrane; however, here the voids are distributed more uniformly. Finally, in the high-density region
of the hydrophilic headgroups the voids are found, on average, smaller than in the other parts of the system.

Introduction

Traditional objects of the structural application of the
Voronoi-Delaunay method in the field of physics of condensed
matter are the models of systems that are geometrically
represented as ensembles of balls of equal radii (e.g., various
condensed phases of atomic systems). The applicability of the
initial mathematical premises of the method1,2 is also limited
to this case. The method has indeed been used to analyze various
properties of systems of this type at the molecular level, such
as the local order in noncrystalline packings,3-11 extended (i.e.,
intermediate range) structural correlations,12-14 percolation and
properties of the interatomic voids,15-17 etc. The Voronoi-
Delaunay method is still widely applied in its classical form

for analyzing different structural aspects of various condensed
systems.18-22

The application of the method to molecular systems (e.g.,
molecular liquids, solutions, polymers, biological molecules)
might require some modifications of its original version, because
these systems often consist of atoms of different sizes. Further-
more, atoms connected by a chemical bond in these systems
usually approach each other considerably closer than the sum
of their van der Waals radii. Therefore, molecular systems can
geometrically be regarded as ensembles of partially overlapping
balls of different radii. In analyzing the properties of the empty
interatomic space in these systems, we also have to take the
above factors into account.

One of the important problems of the application of the
method for molecular systems is the determination of the region* Corresponding author. E-mail: pali@para.chem.elte.hu.
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of space that can be assigned to a given atom. The Voronoi
polyhedron can only be used for this purpose in systems of
atoms of equal size, because it neglects atomic radii. Thus, in
systems containing atoms of noticeably different sizes, the
surface of the Voronoi polyhedron of a large atom can be partly
or even fully inside the van der Waals sphere representing the
atom, and hence even a part of this van der Waals sphere can
be assigned to other atoms. To avoid this problem, the original
Voronoi polyhedron has been proposed to be substituted by other
constructions that can take atomic sizes also into account. As
the simplest way of overcoming this problem, it has been
proposed to divide the space between atomic pairs by the planes
passing between the atomic surfaces.23 In this case, the faces
of the polyhedron constructed do not intersect the surface of
its central atom. However, this idea did not become widely used,
because the polyhedra constructed in this way do not provide a
correct tessellation of the space (i.e., they can overlap each
other as well as can have gaps between them). As a further
improvement, the use of the radical tessellation (called also the
power24 or Laguerre tessellation25 in mathematics) has been
proposed.26,27 This tessellation can be used to correctly divide
space among the atoms according to their size. However, despite
its interesting mathematical properties,28 the physical meaning
of this tessellation is not obvious. Therefore, the use of the
Voronoi S-tessellation29,30seems to be more appropriate for this
purpose. In constructing this tessellation, the distance of a spatial
point from an atom is defined simply as the shortest distance
from its surface. For spherical particles, the Voronoi S-
tessellation coincides with the known additively weighed
Voronoi diagram;31 however, it can also be defined for bodies
of other shapes.31,32 Some peculiarities33,34 and mathematical
properties31,35,36of the Voronoi S-tessellation are discussed in
several previous works.

It should be noted, however, that the determination of the
Voronoi S-tessellation is far from being obvious. Thus, several
attempts have been made to find appropriate algorithms for this
problem. Some authors have only considered the problem in
two dimensions,37-39 which, however, does not display some
important peculiarities of the 3-dimensional case. The 3D case
is discussed in detail by Will40 and by Richard et al.41 However,
these studies are restricted to the determination of the Voronoi
S-regions. Goede et al. have used this method to describe the
shape of the surface of complex molecules.42 In some previous
papers we have presented another algorithm and used it for the
calculation of the Voronoi S-network.29,30 However, this algo-
rithm proved to be inefficient for larger models. A specific
algorithm for a numerical determination of the S-network in
systems consisting of straight lines and spherocylinders has also
been described.32 Recently, we have developed a novel algo-
rithm for constructing the 3D Voronoi S-network in large
models.43

Another important problem related to the Voronoi analysis
of molecular systems is the investigation of the properties of
the interatomic voids. The analysis of the interatomic cavities,
voids, and pockets differs somewhat from the determination of
the volumes assigned to given atoms. This analysis can
conveniently be done by using the Delaunay simplexes deter-
mined by four mutually neighboring atoms. Such quadruplets
of atoms are the simplest elements of the structure in the three-
dimensional space, each of them determining an elementary
cavity. Any complex void can be composed by such simplex
cavities. This property of the Delaunay simplexes has success-
fully been used to solve various problems in the analysis of

interatomic voids in various systems,14,17,20including biological
ones.44

Hydrated phospholipid membranes are rather complex, aniso-
tropic and highly inhomogeneous molecular systems, in which
the analysis of the properties of voids cannot be reliably done
by the original version of the Voronoi-Delaunay method. The
investigation of the properties of the voids in hydrated phospati-
dylcholine membranes is, however, of particular importance,
because these molecules, such as dimyristoylphosphatidylcholine
(DMPC) and dipalmitoylphosphatidylcholine (DPPC), are the
main components of the membranes of the eukaryotic cells.
Although the transport of molecules across biological mem-
branes is usually assisted by various channel-forming proteins,
several small, uncharged molecules (e.g., O2, CO, CO2, NO)
can permeate through the membrane simply by diffusion.
Computer simulation investigation of this diffusion process is,
however, seriously hindered by the extreme computational effort
required by such calculations. To our knowledge, the diffusion
profiles of molecules across a hydrated membrane bilayer have
only been determined once by computer simulation methods,
in the pioneering works of Marrink and Berendsen.45,46Indirect
information on the permeability of the membrane for various
penetrants can be obtained from computer simulation by
calculating the free energy profile of the penetrants, i.e., the
thermodynamic driving force of their diffusion.47,48Furthermore,
the properties (e.g., size, shape, and orientation) of the inter-
molecular voids in the membrane are also obviously related to
the membrane permeability, as the possible presence of pre-
formed channels can largely facilitate the diffusion of the
molecules of appropriate size. The properties of the voids in a
lipid bilayer have, to our knowledge, only been analyzed once,
in the fully hydrated DPPC bilayer by Marrink, Sok, and
Berendsen using an approximate method (i.e., search along a
grid) for locating the voids in the system.49

Geometric Concepts of the Voronoi-Delaunay Method
System of Discrete Points or Atoms of the Same Size.In

this section we recall the main notions of the original version
of the Voronoi-Delaunay method, in which the object of the
study is a three-dimensional system of discrete points (centers
of atoms), or atoms of equal radii.1,2 The first construction of
the method is the Voronoi polyhedron, i.e., the region of space
where all points are closer to the center of a given atom than to
the center of any other atom. The Voronoi polyhedra constructed
for all atoms of the system form a mosaic, called the Voronoi
tessellation, which covers the space without overlaps or gaps.
An important property of the Voronoi tessellation is that it
defines quadruplets of mutually neighboring atoms, whose
particular feature is that the sphere circumscribed around them
does not contain any atomic centers. Moreover, the sphere
inscribed among the atoms of such quadruplets is empty, i.e.,
does not overlap with any atoms of the system. Such a
quadruplet of atoms determines a tetrahedron, called the
Delaunay simplex. Similarly to the Voronoi polyhedra, the
Delaunay simplexes constructed for the entire system also form
a mosaic covering the space without overlapping and gaps. This
mosaic is called the Delaunay tessellation. Thus, the Delaunay
simplexes can be regarded as the “bricks” composing the empty
interatomic space in an atomic system.

The set of all vertexes and edges of the Voronoi polyhedra
forms a singly connected network, called the Voronoi network.
The Voronoi network is a geometric construction that can be
conveniently used in analyzing spatial structural correlations
of the interatomic voids. Each vertex (site) of the Voronoi
network corresponds to one of the Delaunay simplexes, being
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the center of its circumscribed sphere. Each edge (bond) of the
Voronoi network represents a fairway passing through the
narrow bottleneck between three atoms from one site to the
neighboring one. The basic constructions of the original
Voronoi-Delaunay method are illustrated in the left panel of
Figure 1 for a system of equal spheres.

System of Atoms of Different Sizes.Consider now the
generalization of the Voronoi-Delaunay method that makes it
suitable for the analysis of the empty interatomic space in
systems consisted of atoms of different sizes.29,33,34The basic
construction of the generalized method is the Voronoi S-region,
i.e., the region of space where all points are closer to thesurface
of a given atom than to that of the other atoms of the system.
For atoms of the same size, this region obviously coincides with
the Voronoi polyhedron. In the case of atoms of different sizes,
however, the faces of the Voronoi S-region are pieces of second-
order surfaces rather than planes. Although the metrics and
topology of the Voronoi S-region can also characterize the local
environment of its central atom,41 its most important property
is to determine the region of space that can be naturally assigned
to a given atom. The Voronoi S-regions constructed for all atoms
of the system form a mosaic that covers the space without
overlapping and gaps. This mosaic is called the Voronoi
S-tessellation.

Similarly to the original Voronoi tessellation, the Voronoi
S-tessellation can also define quadruplets of mutually neighbor-
ing atoms, the sphere inscribed among which is empty. Thus,
each quadruplet determines a Delaunay S-simplex and represents
an elementary cavity between the atoms. The Delaunay S-
simplexes usually coincide with the classical Delaunay sim-
plexes defined for the atomic centers; however, depending on
the atomic radii, they can also differ from them.34 Further,
similarly to the classical case, the Voronoi S-network can be
defined as the set of the vertexes and edges of all the Voronoi
S-regions of the system. Each vertex (site) of the Voronoi
S-network is the center of an interstitial sphere, corresponding
to one of the Delaunay S-simplexes, whereas each edge (bond)
of the network is a fairway passing through the bottleneck
between three atoms from one network site to the neighboring
one. The Delaunay S-simplexes corresponding to neighboring
S-network sites have one face (i.e., three atoms) in common.
The main constructions of this generalization of the Voronoi-
Delaunay method are illustrated and compared to those of the
original method in the right panel of Figure 1.

When the properties of the empty space are analyzed in terms
of the Voronoi S-network in a system, the same sets of data

are required as for the use of the classical Voronoi network.34

Thus, the coordinates of the network sites should be kept in
the array{D}, whereas their connectivity (i.e., the bonds of the
network) is stored separately, in array{DD}. Because each bond
determines the bottleneck between a pair of network sites, it is
useful to have a special array{Rb} containing the radii of the
bottlenecks. The radii of the interstitial spheres, each of them
corresponding to a network site, are stored in array{Ri}. The
algorithm proposed by us43 provides the values of{Rb} and
{Ri} directly from the determination of the network. The
information needed to conveniently work with the Delaunay
S-simplexes, i.e., the lists of the atoms determining the network
sites, is contained in the array{DA}. Finally, the array{Ve},
containing the values of the empty volume inside the Delaunay
S-simplexes, provides the information needed to analyze the
volume of the voids. These volumes can be calculated using
the array{DA} together with the coordinates{A} and radii
{Ra} of the atoms of the system studied.

Some Peculiarities of the Voronoi S-Tessellation for
Ensembles of Spheres.The Voronoi S-tessellation in systems
of spheres of different sizes has, in general, some specific
features that can hamper its use in the analysis of the interatomic
space.34 However, these features are usually not manifested in
systems corresponding to physically sensible arrangements of
molecules, and hence the methodology can directly be applied
to most of the physical systems. Nevertheless, the peculiar
features of the S-tessellation are absent from the classical
Voronoi tessellation, which can make the analysis of the
interatomic space difficult, and hence, the specific arrangements
of the atoms corresponding to these peculiarities should be
marked. These possible features of the Voronoi S-tessellation
are discussed in detail elsewhere;34,43 therefore only a brief
summary of them is given here.

The main reason of the unpleasant peculiarities of the Voronoi
S-tessellation is that, unlike in the case of the original Voronoi
tessellation, the Voronoi surface dividing the space between two
atoms is now a second-order curve (hyperboloid) rather than a
plane. Therefore, some of the Voronoi S-regions can be
principally different from a polyhedron. In particular, such
regions can have only two faces, and hence no vertexes. More
complex cases are discussed in detail elsewhere.34 Such
peculiarities are manifested if a small atom is located in a narrow
gap between larger ones. This example shows that the Voronoi
S-network can even be disconnected. In such cases it has to be
found out how to connect separate parts of the Voronoi
S-network. In the classical approach, the Voronoi network is
singly connected and connects all the simplex cavities present
in the system. Our experience shows that real molecular systems
also possess singly connected Voronoi S-networks. Nevertheless,
the singly connectivity of the S-network should be controlled
in the stage of the network construction.43

Another possible peculiarity of the Voronoi S-network is that
its two different sites can correspond to the same four atoms.
In this case each site corresponds to its own interstitial sphere,
and hence the corresponding Delaunay simplex contains two
inscribed spheres. This peculiarity can, however, easily be taken
into account in the analysis of the Voronoi S-network.

The next problem is that the Delaunay S-simplexes, unlike
their classical analogues, can overlap each other in certain
conditions. The existence of such “internal” S-simplexes
introduces an error in the calculation of the volume of the
interatomic voids. These simplexes can readily be distinguished
when constructing the Voronoi S-network. However, specific
atomic arrangements leading to this peculiarity appear with
rather low probabilities in physically relevant disordered mo-

Figure 1. Two-dimensional illustration of the Voronoi regions in a
system of balls of the same size (left) and in that of balls of different
sizes (right). The edges of the Voronoi regions (i.e., Voronoi polyhedra
and Voronoi S-regions in the systems shown on the left and right panel,
respectively) are shown by thick lines, and those of the Delaunay
simplexes are indicated by thin lines. In the right panel dashed lines
depict the edges of the conventional Voronoi polyhedra of the system
(same as shown in the left panel).
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lecular systems, and hence the above error is usually marginal.
This can be verified by comparing the sum of the volumes of
the calculated Delaunay S-simplexes with the total volume of
the system. In the analyses presented in this paper the difference
of the two volumes has always been found to be below 0.01%.

Consideration of Atomic Overlapping

Mathematically, the Voronoi S-network can be determined
over the entire space, also inside overlapping atoms. However,
when the interatomic space is analyzed, only the part of the
network located outside the atoms has to be known. Hence, the
problem of overlapping of the chemically bound atoms can
easily be solved. By definition, each bond of the Voronoi
S-network is the locus of points located at equal distance from
the surfaces of the nearest three balls (atoms). This locus does
not change if we change the radii of the corresponding balls by
the same valued (see Figure 2). Similarly, the S-network site
(i.e., the common vertex of the Voronoi S-regions) remains at
the same position if the radii of the corresponding four balls
are changed by the same value. This particular feature of the
Voronoi S-tessellation allows the construction of a new, reduced
system by decreasing the radii of all spheres of the initial system
by a constant valued to avoid their overlapping. The Voronoi
S-network of the system investigated can then be constructed
on the reduced system of nonoverlapping balls. The data
required to describe the S-network (i.e., the coordinates of
network sites{D}, the table of connectivity{DD}, and the table
of the incidence of sites and atoms{DA}) fully coincide for
the initial and the reduced system. The values of the radii of
the interstitial spheres{Ri} and bottlenecks{Rb} for the initial
system are simply related to the corresponding values{Ri′} and
{Rb′} of the reduced system asRi′ ) Ri + d andRb′ ) Rb + d.
Obviously, some of these values can be negative in the initial
system, indicating that the corresponding sites or bonds are
completely covered by the atomic spheres and hence can be
neglected in the analysis. A similar procedure can be applied if
only those regions of the interatomic space are of interest in
which the radius of the bottlenecks exceeds a given limiting
value and hence is accessible for a probe of this radius. The
procedure of determining the part of the Voronoi S-network
situated in the empty space between the atoms is illustrated in
Figure 3.

Finally, it should be noted that although the above procedure
proposed to avoid atomic overlapping by decreasing all the
atomic spheres of the system is rather simple, it is not always
feasible in this form. Obviously, the value ofd cannot be smaller
than the radius of the smallest atom of the system, whereas the
system might contain large atoms, the overlapping of which
exceedsd. This problem can be avoided by reducing the size

of the atomic spheres locally, i.e., when a given site of the
S-network is calculated, only the overlapping of the correspond-
ing four atoms is eliminated.43 Overlapping cannot be eliminated
when one of the atoms is located fully inside another one.
However, this case is of no practical interest, because the internal
atom does not participate at all in the formation of empty
interatomic space and thus can be neglected.

Determination of the Interatomic Voids

The empty space in a three-dimensional system of atoms is
a complex, singly connected region confined by the atomic

Figure 2. Illustration of the fact that the Voronoi S-network does not
change if the radii of the balls (atoms) are decreased by the same value
d.

Figure 3. Two-dimensional illustration of the determination of the
Voronoi S-network and Delaunay S-simplexes in a molecular system.
Top: the system to be analyzed, represented as an ensemble of partly
overlapping balls of different radii. Middle: reduced system, obtained
by decreasing the radii of all of the balls by the same valued. The
Voronoi S-network obtained in the reduced system is also shown (thick
lines). Bottom: parts of the Voronoi S-network located outside the
atomic spheres (thick lines) and Delaunay S-simplexes (thin lines) of
the system.
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surfaces. Any interatomic void to be distinguished is a part of
it and depends on the detection criterion. A natural physical
way of defining voids is through the value of the radius of a
probe (test sphere) that can be put in the given void. Thus, voids
are the parts of the interatomic space that are accessible for a
given probe. Therefore, when voids are discussed, the radius
Rprobe of the corresponding probe should always be indicated.
The number, size, and morphology of the voids in a given
system depend on the probe radius: though almost the whole
empty interatomic space is accessible for a small probe, only
the most spacious cavities represent voids for larger ones.

Interstitial Spheres (Ri Coloring). Interstitial spheres are
simple but important elements of the empty interatomic space.
As has been discussed in a previous section, these spheres
represent real empty volume between the atoms. Therefore, the
values of their radii indicate the length scale of the voids present
in the system. Because each site of the Voronoi S-network is
the center of one of these spheres, once the coordinates of the
network sites{D} as well as the radii of the interstitial spheres
{Ri} are known, the location of the large and small voids can
readily be determined. For example, the largest voids can simply
be distinguished by marking (coloring) the S-network sites the
corresponding interstitial spheres of which have a radius larger
than a limiting valueRlim. This procedure of distinguishing the
sites of the Voronoi S-network by the radius of the correspond-
ing interstitial spheres, called theRi coloring the network,34,50

is illustrated in Figure 4.
System of Bottlenecks. Determination of Voids (Rb Color-

ing). A more comprehensive analysis of the voids and inter-
atomic channels requires also the consideration of the bottle-
necks of the empty space, i.e., the bonds of the Voronoi
S-network. If a probe can move along an S-network bond (i.e.,
pass through a bottleneck) then both of the network sites
connected by this bond are also accessible for it.34 Thus, the
regions accessible for a given probe can be determined by
distinguishing the bonds, the bottleneck radius of which exceeds
a given limiting value. The clusters consisting of these bonds
represent the fairways of the empty interatomic regions along
which a given probe can be moved. Distinguishing bonds of
the Voronoi S-network according to their bottleneck radii is
called theRb coloring of the network.34,51 The use of theRb

coloring of the Voronoi S-network in determining the voids in
a system is illustrated in Figure 5.

The description of the voids as clusters of S-network bonds
and sites is very useful in locating the large voids in the system
investigated. However, when a more detailed analysis of the
voids is done, their volumes should also be calculated. This
can be done with the help of the Delaunay S-simplexes.
Knowing the sites of the Voronoi S-network that are involved

in a given cluster, all S-simplexes composing this void are also
known (see Figure 5b). Whilst the cluster of the S-network sites
and bonds represents the “skeleton” of a void, the union of the
empty volumes of the corresponding S-simplexes form its
“body” (see Figure 5c). The void is confined by the surfaces of
the atomic spheres and flat faces of the corresponding S-
simplexes; and the probe can move along the S-network bonds
between the sites involved in this void. The rest of the empty
space in the system is inaccessible for this probe. The proposed
representation of the voids provides a quantitative basis for the
analysis of various characteristics of them.

Calculation of the Empty Space of the Delaunay S-
Simplex. As shown in the previous subsection, in determining
the volume of the voids present in a system the volume of the
empty part of the corresponding S-simplexes has to be calcu-
lated. At first glance, it seems to be a rather straightforward
task; the volume to be determined is simply the total volume
of the simplex minus the volume occupied by the parts of its
own atoms. This calculation is based on the assumption that
only the atoms determining an S-simplex can occupy any part
of its volume. However, besides their own atoms, S-simplexes
often involve several alien atoms as well.34,52 The volume
occupied by these atoms in an S-simplex is rather difficult to
take into account. Additional problems arise from the overlap-
ping of atoms inside the simplexes, which should also be taken
into account to calculate the empty volume correctly. Although
analytical formulas can be derived for treating double and triple
overlapping, multiple overlapping, which appears rather often
for the alien atoms, is analytically almost untreatable. Due to
these difficulties, numerical calculation of the empty volume
of an S-simplex is, in general, far more efficient and accurate
than its analytical determination. Such a calculation can simply
be done by filling the simplex by sample points (arranged either
randomly or along a grid) and determining the fraction of points
located outside the atoms. This procedure can be done rather
efficiently, because the list of the alien atoms potentially
overlapping with the simplex can be readily defined beforehand,
using the Voronoi S-tessellation of the system. Namely, the
distance of these atoms from the Voronoi S-network site
corresponding to the S-simplex considered cannot be larger than
Rsph + Rmax, whereRsph is the radius of the sphere inscribed
among the atoms determining the S-simplex, andRmax is the
radius of the largest atom present in the system. The accuracy
of the calculation can be improved by increasing the number
of the test points used, which, however, increases also the
computational cost of the calculation. In the analyses reported
in the present paper these calculations have been done with an
average accuracy of(2%.

Figure 4. Two-dimensional illustration of theRi coloring of the Voronoi S-network sites in the system shown in Figure 3. Left: all interstitial
spheres of the system. Black dots indicate the Voronoi S-network sites corresponding to interstitial spheres larger than the probe shown between
the two figures. Right: interstitial spheres having a radius larger than that of the probe.
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Properties of Voids in the Simulated DMPC Membrane

The detailed investigation of the properties of voids is of
particular interest in hydrated membranes formed by ampiphilic
lipid molecules. These membranes, consisting of hydrophobic
and hydrophilic regions as well as an aqueous phase hydrating
the lipid molecules are highly anisotropic and inhomogeneous
systems, and hence the voids present in such systems are
expected to show a rather complex behavior. The characteristics
of these voids influence the properties of the membranes in
several respects. Thus, the diffusion of small molecules in the
membrane, and hence the permeability of the membrane depend
strongly on the size, shape, and orientation of its voids. Because
phospholipid molecules, such as DMPC and DPPC are the main
components of the membranes of eukaryotic cells, the mem-
branes built up by such molecules are also of biological
relevance; any investigation of the structure and function of the
real biological membranes of rather complex structures requires
detailed understanding of the properties of simple phospholipid
membranes. Although phospholipid membranes have been
intensively studied by computer simulation methods,45-49,53-62

the properties of the voids in such membranes have been the
subject of only a few studies, focusing primarily on the
distribution of the empty space across the membrane.45,47-49

System Investigated.The system investigated in the present
study is a computer model of the fully hydrated DMPC bilayer,
as obtained from a recent all-atom Monte Carlo simulation,
performed on the isothermal-isobaric (N,p,T) ensemble under
physiological conditions (i.e., at 1 atm and 310 K).61 Each of
the two membrane layers contain 25 DMPC molecules, de-
scribed by the CHARMM22 force field optimized for proteins
and phospholipid molecules,63 and the bilayer is hydrated by

2033 TIP3P64 water molecules. The bond lengths and bond
angles of the molecules are fixed at their equilibrium values,
whereas torsional flexibility of the DMPC molecules is intro-
duced. The sample analyzed here consists of 1000 independent
configurations, each of them separated by 105 new Monte Carlo
steps from the previous one. Details of the simulation of the
system and a thorough analysis of its molecular level structure
are given in our previous papers.48,61,62 The snapshot of an
instantaneous sample configuration of the system is shown in
Figure 6.

Main Characteristics of the Interatomic Space.Ri Distri-
bution. As mentioned above, the length scale of the voids in a

Figure 5. Two-dimensional illustration of theRb coloring of the Voronoi S-network sites in the system shown in Figure 3. Thick lines indicate the
bonds of the Voronoi S-network, the bottleneck radius of which exceeds the radius of the probe shown between the two top figures. Top left: parts
of the Voronoi S-network located outside the atomic spheres. The location of the bottleneck along two selected bonds is shown by arrows. Top
right: detected clusters ofRb-colored S-network bonds, and the corresponding Delaunay S-simplexes. Bottom: voids corresponding to the clusters
of Rb-colored S-network bonds.

Figure 6. Snapshot showing an equilibrium configuration of the atoms
in a simulated fully hydrated DMPC bilayer.
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system is set by the radii of the interstitial spheres. Figure 7
shows the distribution of the radii of these spheresRi in the
lipid bilayer simulated. As is seen, the distribution is rather
symmetric; it is not extended above 1.8 Å, indicating that the
system does not contain particularly large voids. The highest
fraction of the interstitial spheres has a radius of about 0.6 Å,
indicating that the bilayer studied is a rather dense system. It
should be noted that the negativeRi values are assigned to the
interstitial spheres of the reduced model, which, after acquiring
the initial atomic sizes, appear completely inside the atoms, as
discussed in a previous section. Real voids correspond to the
positiveRi values. The sharp peak appearing between 0.5 and
0.6 Å at the position of the main broad peak of the distribution
is due to the intramolecular voids of DMPC molecules (i.e., to
the spheres inscribed between the atoms belonging to the same
molecule).

Spatial Distribution of the Interstitial Spheres. Figure 8 shows
the interstitial spheres, the radii of which exceed 1.6 and 1.2
Å, respectively, in the sample configuration shown in Figure
6. The use of the former limiting radius value leads to the few
large voids of the system (see Figure 7), whereas with the choice
of Ri > 1.2 Å a number of smaller voids are also detected. Both
choices ofRi demonstrate that the population of large voids is
considerably higher at the center of the bilayer and in the
aqueous phase than in the region of hydrophilic headgroups of
the DMPC molecules, where only a few large voids can be
detected. This observation is in accordance with the fact that
the density profile of the system goes through a clear maximum
in the region of the lipid headgroups.61

Fraction of the Empty Space across the Membrane. The
qualitative conclusions drawn from the snapshots of Figure 8
on the distribution of the empty space along the membrane
normal can be quantified by calculating the profile of the fraction
of the empty volume across bilayer. This profile can be
calculated in several different ways, even without using the
Voronoi-Delaunay method (e.g., by placing sample points in
the system either randomly or along a grid, as done by Marrink
et al.49). However, having already determined the Voronoi
S-network and the Delaunay S-simplexes of the system, the
profile can readily be calculated. Thus, the empty volume in a
given slice of the system along the membrane normal axisz
can be estimated as the sum of the empty volumes of the
Delaunay S-simplexes located in this layer. The position of an
S-simplex can simply be estimated as the position of the
corresponding Voronoi S-network site (i.e., the total empty
volume of an S-simplex is assigned to the membrane layer in
which the corresponding S-network site is located). This
approach assumes that the characteristic size of the Delaunay
S-simplexes of the system is considerably smaller than the length
of the edge of the basic box along which the profile is calculated.
This condition is safely satisfied in the case of the system
analyzed here.

The obtained profile of the fraction of empty space, sym-
metrized over the two sides of the membrane, is shown on the
top panel of Figure 9. Following the convention used in our
previous paper,65 the system is divided into three separate
regions in the following analyses. Thus, region 1 is located at
the middle of the membrane, at|z| e 8 Å (z ) 0 being in the
middle of the bilayer); region 2 covers the layer at 8 Åe |z| e
24 Å, whereas region 3 is located farthest from the membrane
interior, at|z| g 24 Å. These regions roughly coincide with the
apolar hydrocarbon phase of the bilayer, the region of the
hydrophilic headgroups of the DMPC molecules, and the region
of bulklike water, respectively.61 As is seen, the largest fraction
(almost 50%) of the space is found to be empty in the aqueous
phase of the system, whereas the fraction of the empty space is
clearly the smallest in the regions of the hydrophilic DMPC
headgroups, being as low as 30% in the middle of this region.
The obtained profile is in good agreement with the similar
profile estimated by Marrink et al. in the hydrated bilayer of
DPPC by setting a grid of sample points in their system.49

The above approach can readily be used to calculate also the
partial profiles of the fraction of empty volume (in which only
the volume belonging to large enough voids is taken into
account) across the system. Such profiles can simply be
determined by considering only the Delaunay S-simplexes the

Figure 7. Distribution of the radii of the interstitial spheresRi present
in the simulated fully hydrated DMPC bilayer. Negative values ofRi

correspond to the regions completely covered by the atoms.

Figure 8. Interstitial spheres of a radius of at least 1.6 Å (left) and 1.2 Å (right) in the configuration shown in Figure 6.
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radius of the interstitial sphere of which is larger than a limiting
value. The partial profile obtained with the limiting radius value
of Rprobe) 1.4 Å is shown on the bottom panel of Figure 9. As
is seen, contrary to the total empty volume, the highest fraction
of the space belongs in region 1 to voids accessible for a probe
of this size. This finding, being also in qualitative agreement
with the results of Marrink et al.,49 indicates that the empty
space is distributed among a large number of rather small
cavities in the aqueous phase, and among a few more spacious
cavities in the middle of the membrane.

Interatomic Cavities as Clusters on the Voronoi S-
Network. The voids accessible for relatively large probes in a
system are of particular interest, as they form the widest channels
and pores. As discussed in a previous section, these voids can
be revealed by means of theRb coloring of the Voronoi
S-network of the system, in which the bonds whose bottleneck
radius exceed a given limiting value ofRprobeare distinguished.
For large values ofRprobethe procedure results in a small number
of isolated clusters of the bonds, corresponding to the most
spacious voids of the system. Considering also some narrower

bottlenecks (i.e., decreasing the value ofRprobe) more complex
clusters are obtained. At a critical value of the probe radius the
system of the clusters becomes percolated; i.e., a large cluster
extending over the entire system arises, through which the probe
can pass from any part to any other part of the system. Finally,
when Rprobe is zero, all the bonds of the Voronoi S-network
located in the empty space of the system are colored. Obviously,
the sites of the Voronoi S-network connecting contiguous bonds
are also involved in the cluster, because any probe that can pass
along an S-network bond fits also into the interstitial spheres
at both terminal sites of the bond. To find all places accessible
for a given probe in the system, the single sites of the Voronoi
S-network at which the radius of the interstitial sphere exceeds
the radius of the probe should also be taken into account, even
if the bottleneck radii of all the bonds emanating from this site
are smaller than this limiting value. Such voids consist of one
single simplex only. Note that once the clusters accessible for
the probe of a given size are distinguished by theRb coloring
procedure, and the single sites with the proper interstitial sphere
are also taken into account, the properties of the Voronoi
S-tessellation guarantee that the system does not contain any
other void accessible for this probe.

Figure 10 shows the bonds of the Voronoi S-network whose
bottleneck radius exceeds 1.3 Å in the sample configuration
shown in Figure 6. Similarly to the interstitial spheres revealed
by the Ri coloring of the system (see Figure 8), most of the
S-network bond clusters representing the voids are also located
in the aqueous phase and in the middle of the membrane.
Nevertheless, the information extracted from theRb coloring
of the S-network differs from that provided by itsRi coloring,
even if the clusters distinguished by the two methods almost
coincide for large enough probes.

As seen from Figure 10, the use of the probe radius of 1.3 Å
leads to a number of small clusters that are separated from each
other; the probe can fit into any of the corresponding voids but
cannot move from one void to another. To determine the critical
probe radiusRcrit at which the system of clusters becomes
percolated, we have repeated theRb coloring procedure by
systematically decreasing probe radii. Due to the anisotropy of
the system, however, the value ofRcrit differs when the clusters
are percolating only in lateral directions (i.e., along thex andy
axes) from the value describing percolation even along the
membrane normal axisz. For the lateral percolation we have
obtained the value ofRcrit ) 0.803( 0.016 Å, whereas for the
complete percolation (i.e., also along the membrane normal axis)
the much smaller critical probe radius value ofRcrit ) 0.650(

Figure 9. Profile of the fraction of the empty space (top), and partial
profile of the fraction of the empty space assigned to voids accessible
for a probe of the radius of 1.4 Å (bottom) across the simulated fully
hydrated DMPC membrane. The dashed vertical lines indicate the
division of the membrane into three separate regions.

Figure 10. Right: clusters of the Voronoi S-network bonds having a bottleneck radius of at least 1.3 Å in the configuration shown in Figure 6.
Left: a fragment of this picture shown on an enlarged scale.
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0.014 Å has resulted. This rather large difference between the
two critical radii is due to the fact that the region of the hydrated
DMPC headgroups is rather dense, and hence it contains fewer
and smaller voids than the other regions of the system. To
exclude the influence of the headgroup region, we have also
calculated the critical probe radius for the cluster percolation
along the membrane normal in the central membrane region of
the hydrocarbon lipid tails (i.e., region 1). The obtained value
of Rcrit ) 0.892( 0.089 is now even slightly larger than the
value corresponding to the lateral percolation. However, it is
worth noting that all these critical radii are much smaller than
the size of the smallest molecules, indicating that the DMPC
bilayer does not contain readily formed channels along which
any penetrant molecule could pass through the membrane.
Therefore, the mechanism of the cross-membrane diffusion of
small molecules involves the interaction between the penetrant
and the lipid molecules, as the penetrant can only move into
voids created in the membrane due to the thermal motion of
the lipids and to the lipid-penetrant interaction, i.e., it has to
push apart the lipid molecules to make its way through the
membrane.

Analysis of the Void Shape.In our previous paper,65 we
have proposed to represent the determined interatomic voids
as spherocylinders. In finding the spherocylinders covering the
voids, optimally fitting procedures have been found to be rather
time-consuming. Therefore, a method for the direct determina-
tion of the parameters describing the spherocylinders has been
proposed.65 Here we briefly recall the main points of this
method. A fictitious “mass” proportional to the empty volume
of the corresponding Delaunay S-simplex is assigned to each
site of the S-network cluster representing the void. In this way
the voids of any complex shape are represented by a system of
massive points. Then the tensor of inertia of the void is
calculated using these fictitious masses. The axis of the tensor
along which its principal value is minimal indicates the direction
of the largest extension of the void and is taken as the axis of
the required spherocylinder. The lengths of the cylindrical part
of the spherocylinderL are calculated by projecting all the sites
of the cluster to this axis, and the mean square deviation of
these projections is calculated from the fictitious center of mass
of the cluster. Finally, the radius of the spherocylinderR is
unambiguously determined by the condition that the volume of
the spherocylinder should be equal to that of the void:

where the volume of the voidVvoid is the sum of the empty
volumes of the composing Delaunay S-simplexes (i.e., the total
fictitious mass of the cluster). This procedure is illustrated in
Figure 11.

To characterize the size, shape, and orientation of the voids
present in the hydrated DMPC bilayer, we have calculated the
volume of the corresponding spherocylinderVvoid, the parameter

R characterizing the sphericity of the void, defined as

and the cosine of the angleγ formed by the axis of the
spherocylinder and the bilayer normal axisz, respectively. The
value of the parameterR varies from zero (for infinitely long
spherocylinders) to unity (for perfect spheres). To avoid the
arbitrariness of the void definition due to the choice of the probe
radius Rprobe, we have calculated the above parameters with
seven different probe radii, starting fromRprobe ) 1.0 Å and
increasing the probe radius up to 1.6 Å by a step of 0.1 Å. This
range ofRprobe covers the descending side of the peak of the
P(Ri) distribution (see Figure 7), and hence only the relatively
large voids of the system can be detected in this way.
Furthermore, voids of this size can be relevant for accommodat-
ing a water molecule, because similar values are thought to be
realistic as the effective water radius in polar biomolecular
interactions.66,67 The mean values ofVvoid, R, and cosγ have
been determined in the three membrane regions separately. The
dependence of the obtained average values on the probe radius
in the three regions is shown in Figure 12. As is seen, all the
three characteristics of the voids presented are noticeably
different in the three regions of the bilayer. It should also be
noted that the relation of the mean values of the parameters
obtained in the different membrane regions is preserved for all
probe sizes used; i.e., the results are stable to the void detection
criterion. Similar behavior has also been observed for several
other void characteristics65 (e.g., the lengthL and radiusR of
the spherocylinders) that are not presented here.

The results obtained for the mean volume of the voids are in
accordance with the qualitative picture seen from Figures 8 and
10. Thus, the largest voids are clearly found to be located in
the central part of the membrane, whereas the voids located at
the region of the hydrated lipid headgroups are, on average,
considerably smaller than those in the other parts of the
membrane. It should be noted that, despite the above results,
the fraction of the empty space is found to be considerably
smaller in the apolar region of the membrane than in the region
of bulklike water (see Figure 9), indicating that the empty space
is distributed in a considerably more ordered way among the
hydrocarbon chains of the DMPC molecules than in the aqueous
phase. This conclusion is also in accordance with the fact that
the voids in region 1 are, on average, considerably less spherical
than in region 3.

It is also seen that though the obtained〈Vvoid〉(Rprobe) curve
is monotonic in regions 2 and 3, it goes through a minimum in
the region of the membrane interior. The reason of this behavior
is the fact that the decrease of the probe radius, simultaneously
with the appearance of small voids, leads also to the fusion of
the voids that are separated for larger probe radii after a certain
point. Obviously, this fusion of the separated voids appears at
smaller probe radii values in systems containing smaller voids.

Figure 11. Illustration of the construction of the spherocylinder representing a given void. Left: the cluster of the Voronoi S-network sites representing
the void. The principal axis of the tensor of inertia of these sites is also indicated (see the text). Center: union of the interstitial spheres centered
on the sites. Right: the obtained spherocylinder (drawn on the top of the interstitial spheres).

Vvoid ) R2π(L + 4
3
R) (1)

R ) 2R
2R + L

(2)
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Therefore, the minimum behavior of the〈Vvoid〉(Rprobe) curve
can also be expected in regions 2 and 3 atRprobe values below
1.0 Å. Indeed, traces of the presence of such a minimum can
already be seen on the curve obtained in region 3 below about
1.2 Å.

In analyzing the average orientation of the voids it should
be noted that the angleγ can vary between 0° and 90°, and
hence the value of cosγ scatters between 0 and 1. Thus,
isotropic orientation of the voids corresponds to the〈cosγ〉 value
of 0.5 (indicated by a dashed horizontal line in Figure 12). The
〈cos γ〉 values larger than 0.5 indicate that the preferred
orientation of the voids is perpendicular rather than parallel to
the plane of the bilayer, whereas〈cosγ〉 < 0.5 indicates opposite
orientational preferences. The strongest orientational ordering
of the voids is seen in the middle region of the membrane for
all the probe radii used. Here the voids are aligned preferentially
parallel with the bilayer normal, and hence, also with the C-C
bonds of the lipid hydrocarbon tails.61 The fusion of the voids
with decreasing probe radius makes this orientational preference
even stronger, as the obtained〈cosγ〉(Rprobe) function increases
monotonically with decreasing probe radius below 1.3 Å. A
similar but weaker orientational preference of the voids is seen
in the region of the headgroups, in accordance with our previous
finding that the preference of the lipid headgroups themselves
for a parallel orientation with the membrane normal axisz is
also considerably weaker than that of the hydrocarbon lipid
tails.61 Finally, the orientation of the voids located in the aqueous

phase is nearly isotropic, although a slight but deliberate change
of 〈cosγ〉 is seen with changing probe radius. This dependence
of 〈cosγ〉 onRprobein region 3 is rather similar to that in region
2, indicating that the likely reason is simply that the definition
of the separate membrane regions used here is rather arbitrary,
and hence, due to the roughness of the membrane surface, parts
of the headgroups of several lipid molecules can also be located
in region 3, influencing the properties of the voids also in this
region. Although this influence is usually rather small, it
becomes evident when it induces a slight orientational order
among the voids otherwise oriented in a totally disordered way.

To analyze the change of the void characteristics along the
membrane normal axisz in more detail, we have calculated the
profile of 〈Vvoid〉, 〈R〉, and〈cosγ〉 across the membrane using
the Rprobe value of 1.3 Å. The position of a void is defined by
the fictitious center-of-mass of the corresponding S-network
cluster. The obtained profiles, symmetrized over the two sides
of the bilayer, are shown in Figure 13. The void volume profile
is in clear accordance with the density profile of the membrane,61

higher densities always correspond to the presence of smaller
voids on average. The only deviation from this correspondence
is that the peak of the〈Vvoid〉(z) profile at the middle of the
membrane is noticeably sharper than the density minimum in
this region (see Figure 4 of ref 61). This deviation indicates
again that the empty space is considerably more ordered in the
middle of the membrane than in its outer parts. The comparison
of the obtained〈Vvoid〉(z) and〈R〉(z) profiles shows that there is
a clear and strong correlation between the average size and
sphericity of the voids; i.e., larger voids are, on average,
consistently less spherical than smaller ones. Thus, the most
spherical voids are located in the dense region of the headgroups.

Figure 12. Dependence of the mean volume of the voids (top), mean
value of the sphericity parameterR of the spherocylinders representing
the voids (middle), and mean cosine of the angleγ formed by the axis
of the spherocylinder and the membrane normal axisz on the radius of
the probe used in the void detection criterion (Rprobe) in the three separate
membrane regions: squares, region 1 (hydrocarbon tails); circles, region
2 (hydrophilic headgroups); triangles, region 3 (aqueous phase).

Figure 13. Profile of the average volume (top), sphericity parameter
(middle), and orientation (bottom) of the spherocylinders representing
the voids across the simulated fully hydrated DMPC bilayer. The dashed
vertical lines indicate the division of the membrane into three separate
regions.

Morphology of Voids in DMPC Membrane J. Phys. Chem. B, Vol. 108, No. 49, 200419065



This result is in clear accordance with the conclusion drawn in
a previous study48 from the comparison of the probability profile
of finding spherical cavities of a given minimum size and the
density profile of the system, even if the difference in sizes of
the atoms constituting the system has not been taken into account
in that study.48

The orientational profile of the voids shows a clear peak at
aboutz ) (8 Å, i.e., where approximately the outer part of the
hydrocarbon lipid tails is located.61 This peak is followed by a
minimum in the middle of the memrane, i.e., among the
hydrocarbon chain terminal groups. This difference observed
between the orientational ordering of the voids in the outer and
inner part of the region of the hydrocarbon tails is in agreement
with the findings of Marrink et al. on the difference between
the orientational ordering of the lipid tails themselves45,46,49and
indicates again that the orientational ordering of the voids is
clearly induced by that of the chains of the DMPC molecules
in the membrane.

Summary and Conclusions

In the present work a generalized version of the Voronoi-
Delaunay method is used to analyze voids in a computer model
of a hydrated lipid bilayer. The original method is modified to
make it applicable for molecular systems, i.e., ensembles of
partly overlapping spheres of different sizes, as well. Thus, the
Voronoi region of the atoms is confined by second-order
surfaces, being the locus of spatial points located equally far
from the surface rather then the center of the central atom and
its corresponding neighbor. The Voronoi S-network, constructed
in this way, is a map of the voids confined between the atoms,
whereas the Delaunay S-simplexes determine the simplest
interatomic cavities that can be used to represent any complex
intermolecular void.

The applicability of the generalized version of the method is
clearly demonstrated by performing a detailed analysis of the
intermolecular voids in a simulated model of the fully hydrated
DMPC bilayer. In analyzing the properties of voids that are
accessible for probes of different sizes, we have found that the
voids of the system form a percolating network across the
system only for probe sizes significantly below the size of the
smallest molecules, indicating that the membrane does not
contain any preexisting channels along which small penetrants
can pass through the membrane. The properties of the voids
are found to be significantly different in the hydrocarbon phase
and headgroup region of the membrane as well as in the aqueous
phase. The largest and most elongated voids are found to be in
the hydrocarbon phase. The comparison of the preferred
orientation of these voids with that of the lipid tails45,46,49,61

reveals a clear correlation between them. Thus, they prefer the
parallel alignment with the membrane normal axis, and this
preference is found to be considerably stronger in the outer part
of the region of the lipid tails. A correlation between the size
and shape of the voids is also observed, namely smaller voids
are found to be, on average, more spherical. In accordance with
our previous results,48 the smallest and most spherical voids
are found to be in the dense region of the hydrated lipid
headgroups. The fraction of the empty space is found to be
largest in the aqueous phase, although considerably more large
cavities are found to be in the hydrocarbon phase. This finding,
in accordance with previous results,49 indicates that the empty
space is distributed considerably more uniformly (i.e., among
more cavities of smaller size) in the aqueous than in the
hydrocarbon phase.
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