Минобрнауки России

Федеральное государственное бюджетное учреждение науки

Институт химической кинетики и горения им. В.В.Воеводского

Сибирского отделения Российской академии наук

(ИХКГ СО РАН)

Невоструев Данил Александрович

НАУЧНЫЙ ДОКЛАД

об основных результатах подготовленной научно-квалификационной работы

«Производные антратиофена — новые материалы для активного слоя органических фотовольтаических ячеек»

Направление подготовки:

03.06.01 Физика и астрономия

Направленность (специальность):

01.04.17 Химическая физика, горение и взрыв, физика экстремальных состояний вещества

Научный руководитель *д.ф.-м.н., проф. РАН Кулик Л. В.*

Новосибирск 2020

Актуальность темы исследования

В настоящее время технологии развиваются очень быстрыми темпами. Эти технологии используются нами в повседневной жизни: для приготовления еды нам необходима плита, для разговора на расстоянии с коллегами или более близкими людьми — смартфон, для уборки помещений — пылесос и т.д. И каждый день тратит большое человечество количество энергии ЛЛЯ удовлетворения своих нужд, а с каждым годом эта величина становится все больше и больше. Для сравнения: в 1990 году весь мир потребил примерно 10 ПВт·час, а в 2018 — 23 ПВт·час электричества. Для преобразования энергии в потребляемый вид используются различные виды электростанций: на ТЭЦ сжигают природное сырье (уголь, природный газ), на ГЭС используют русло реки, на АЭС — энергию, содержащуюся в радиоактивных изотопах урана-235. Но все эти преобразователи энергии негативно влияют на окружающую среду. Так, побочным процессом сжигания сырья на ТЭЦ является дым и углекислый газ, на ГЭС — изменение русла реки, а на АЭС — выработка радиоактивных отходов и имеется вероятность создания чрезвычайной ситуации. Потому встает проблема поиска нового источника энергии. Таковым является солнце, падающая мощность излучения которого может быть в пределах 1-1.35 кВт/м² в необлачный К день. достоинствам такой энергии можно отнести доступность, возобновляемость, а также — теоретическую безопасность для окружающей среды. Солнечная энергетика делится на два основных вида — неорганическую и органическую. Наука, которая изучает процесс преобразования падающего света в электрическую энергию — фотовольтаика. Основным и наиболее известным представителем неорганической фотовольтаики является кремний, в аморфном или кристаллическом виде; КПД фотоэлементов на его основе достигает 30 %. Однако производство фотоэлементов из неорганических соединений требует больших затрат электричества, к тому же в процессе изготовления используются различные ядовитые соединения — трихлорсилан, мышьяк, ртуть, хром. В качестве противовеса «неорганике» выступает органическая фотовольтаика.

Органический синтез соединений является менее вредным для окружающей среды, причем в последние годы ведутся работы в различных исследовательских группах по «зеленому» синтезу. Фотоэлементы на основе «органики» могут быть нанесены на гибкие подложки, что обеспечивает их использование на самых разных поверхностях, начиная от крыш зданий, заканчивая интегрированием в куртки, сумки и т.д. Но также имеется два слабых места у таких ячеек — цена изготовления, которую входят И материалы, В синтез расходные И производительность (максимальное значение находится в пределах 16 %). Для создания органических фотовольтаических элементов (ОФЭ) обычно используют пару полимер/фуллерен, формирующую активный слой («рабочую лошадку»), в котором полимер выступает в качестве донора электрона, а фуллерен является P3HT/PC60BM, показавший Модельным композитом акцептора. производительность до 6%. Однако ОФЭ на основе фуллеренов обладают повышенной хрупкостью, что исключает создание гибких ячеек, а сам РСВМ имеет низкий коэффициент экстинкции в растворе и пленке в видимой и ИК областях. Таким образом, одним из направлением в органической фотольтаике является поиск, синтез и характеризация новых нефуллереновых акцепторов (HΦA).

В лаборатории химии и физики свободных радикалов ИХКГ СО РАН в 2012 году была создана группа органической фотовольтаики, в которой изучают электромагнитные свойства донорных и акцепторных материалов. С 2016 года в этой группе были синтезированы первые соединения на основе производных антратиофена (AT), а автором данного доклада была отработана методика безвакуумного изготовления ОФЭ в реальных условиях (нанесение всех органических слоев и катода происходит на воздухе) и проведена характеризация новых НФА для применения их в активном слое ОФЭ.

Цель работы

Целью работы является изучение влияния природы производных антратиофена на фотовольтаические характеристики органических ячеек,

изготовленных в реальных условиях, с использованием различных донорных полимеров.

Задачи исследования

1. Синтез, выделение и характеризация производных антратиофена (ангулярных, линейных);

2. Характеризация физико-химическими методами растворов и тонких пленок чистых антратиофенов и их композитов с полупроводящими полимерами;

3. Отработка изготовления верхнего электрода из сплава Филда методом безвакуумного нанесения;

4. Изготовление органических фотовольтаических ячеек на основе антратиофенов в традиционной архитектуре в реальных условиях.

Идея работы

Основной идеей данной работы была проверка применимости простого и недорогого синтеза для получения целевых продуктов на основе одних из самых известных полупроводящих материалов в органической фотовольтаике антраценов. Их гетероциклические аналоги, антрахиноны, являются акцепторами электронов, которые могут быть использованы в паре с донорным полимером в активном слое ОФЭ. После синтеза и выделения новых акцепторов необходимо было их характеризовать в виде растворов, пленок и композитов с донорами электрона. А затем подобрать условия для изготовления солнечных ячеек.

Степень разработанности темы исследования

Тема данного исследования является актуальной, количество работ увеличивается с каждым годом, синтезируется много новых акцепторных соединений. Имеется несколько вариаций синтеза: модификация известных полупроводников (добавление в центральное ядро и боковые заместители акцепторных или малых донорных групп, или атомов галогенов) и создание новых центральных ядер молекулы. Чаще всего для изготовления органических

фотоэлементов используют «идеальные» условия, что подразумевает собой работу в перчаточном боксе с инертной атмосферой, и вакуумное напыление одного из проводящих слоев и верхнего электрода. Также в последнее время В области нанесения проводятся работы верхнего электрода методом электроспрея. Относительно недавно (с 2014 года) появился метод безвакуумного нанесения верхнего электрода путем нанесения жидкого эвтектического сплава индия, висмута и олова (сплав Филда, T_{пл} = 62 °C), что и было использовано в данной работе. Стоит отметить, что практически во всех случаях безвакуумное нанесение подразумевает собой ручную работу, с минимальным использованием оборудования. Касательно сплава Филда имеется одна работа, в которой была модифицирована установка для нанесения — «blade-coater», с чей помощью наносился электрод с воспроизводимыми размерами.

Объект и предмет исследования

Объектом исследования являются полученные ангулярные и линейные антратиофены, использовавшиеся в качестве акцептора электрона. Предмет исследования — фотовольтаические свойства новых соединений и влияние природы центрального заместителя и модификации акцепторных фрагментов на эти свойства.

Научная новизна

В данной работе были синтезированы и выделены в чистом виде новые нефуллереновые акцепторы основе антратиофена на перспективных соединений для фотовольтаики. Удалось установить зависимость физикохимических и фотовольтаических параметров от структуры антратиофена. Метод безвакуумного нанесения верхнего электрода впервые был применен для устройств изготовления фотовольтаических основе нефуллереновых на акцепторов в реальных условиях.

Методология и методы исследования

Для характеризации растворов и тонких пленок используется достаточно большое количество различных методов, в данной работе были использованы распространенные и необходимые. Из наиболее данных спектроскопии оптического поглощения и тушения люминесценции получается информация о способности поглощать свет в определенном диапазоне длин волн и об эффективности диссоциации экситонов В фазах донора акцептора. И Спектроскопия стационарного ЭПР используется для изучения разделения и рекомбинации свободных зарядов в композите. Атомно-силовая спектроскопия дает сведения о морфологии поверхности чистых пленок и их композитов с донорными полимерами. Вольтамперометрия необходима для получения вольтамперной характеристики фотовольтаического устройства, из которой могут быть получены данные о производительности ячейки.

Теоретическая и практическая значимость

Синтез и характеризация новых соединений является неотъемлемой частью органической фотовольтаики. Установление зависимостей параметров фотовольтаических элементов от структуры и геометрии молекул активного слоя помогает понимать особенности генерации, транспорта и экстракции зарядов в готовом устройстве. В ходе работы была обнаружена такая особенность вольтамперных характеристик, как «S-shape». В большинстве случаев этот феномен наблюдается, когда имеет место несбалансированный транспорт заряда, из-за чего инжекция носителей зарядов на один из электродов затруднена. В таком случае наблюдается слабая зависимость плотности тока от напряжения вблизи точки напряжения холостого хода, а точка максимума полезной мощности смещается к точке начала координат. В данной работе было показано, что изменение структуры антратиофенового фрагмента приводит к более «традиционному» виду вольт-амперной кривой (без перегиба вблизи напряжения холостого хода), что может говорить об увеличении подвижности заряда в фазе акцептора.

Достоверность работы

Достоверность представленных в научном докладе выводов и результатов обусловлена комплексным подходом к исследованиям с использованием современного экспериментального оборудования, а также применением современных методов анализа полученных результатов. Признание значимости результатов работы мировым научным сообществом основано на публикациях в рецензируемых зарубежных журналах и предоставлении докладов на российских и международных конференциях.

Апробация работы

Материалы научного доклада были представлены на следующих международных и российских научных конференциях: International Conference on Organic Electronics, ORGEL2019 (Novosibirsk, Russia); 15th International Conference on Organic Electronics, ICOE2019 (Hasselt, Belgium); 4th International Fall School on Organic Electronic, IFSOE2018 (Moscow, Russia); 13th International Conference on Organic Electronics, ICOE2017 (Saint-Petersburg, Russia).

Публикации

По теме работы опубликовано две статьи (и одна находится в печати) в рецензируемых журналах и шесть тезисов конференций.

Положения, выносимые на защиту

1. Антратиофены могут быть использованы в качестве акцепторов электронов в композитах с полупроводящими полимерами в ОФЭ;

2. Обнаружено, что молекулы, содержащие флуореновый линкер, имеют более широкий спектр оптического поглощения и устойчивую к нагреву поверхность в смеси с PCDTBT по отношению к м-фенилоновому центральному ядру;

3. Модификация антратиофеновых фрагментов малононитрильными группами приводит к уширению спектров оптического поглощения, увеличению

эффективности разделения зарядов в смеси с PCDTBT и устойчивости композита к термическому отжигу;

4. Использование линейного антратиофена в качестве акцептора электронов позволяет увеличить КФП (коэффициент фотоэлектрического преобразования) ОФЭ примерно в 10 раз по отношению к ангулярному аналогу.

Соответствие специальности 01.04.17 – химическая физика, горение и взрыв, физика экстремальных состояний вещества

Научный доклад соответствует п. 1 «молекулярная, энергетическая, химическая и спиновая динамика элементарных процессов, физика и физические теории химических реакций и экспериментальные методы исследования химической структуры и динамики химических превращений» и п. 2. «структура и свойства кристаллов, аморфных тел; поведение веществ в электрических и магнитных полях» паспорта специальности 01.04.17 – химическая физика, горение и взрыв, физика экстремальных состояний вещества.

Глава 1. Фотовольтаические свойства композитов на основе ангулярных антратиофенов.

В ходе работы н.с. лаборатории ХФСР ИХКГ СО РАН к.х.н. Барановым Д. С. были синтезированы следующие ангулярные антратиофены (рис. 1):

Рисунок 1. Структуры соединений 1 и 2 (сверху) и центральных *π*-линкеров (снизу): а — п-фениленовый, b — флуореновый, с — м-фениленовый.

На полученных соединениях были изготовлены первые в лаборатории солнечные ячейки. Основная идея заключалась в использовании простых исходных соединений и несложных реакций для получения дешевых нефуллереновых акцепторов как замену фуллеренам. Были изучены свойства чистых соединений в растворах и пленках, а также в виде композитов с полупроводящими полимерами РЗНТ и PCDTBT.

В спектрах оптического поглощения соединений $1a \rightarrow 1b \rightarrow 1c$ в толуоле наблюдается гипохромный сдвиг с незначительными изменениями формы спектра, что может быть связано с изменением относительного расположения заместителей и, соответственно, молекулярных орбиталей (рис. 2). При введении малононитрильных групп наблюдается батохромный сдвиг спектров поглощения в ряду $1\rightarrow 2$ (~28-46 нм) за счет уменьшения энергии НСМО и, следовательно, зазора между НСМО и ВЗМО. В ряду $2a\rightarrow 2b\rightarrow 2c$ наблюдается абсолютно аналогичная картина, что и для соединений 1. Все основные оптические параметры представлены в таблице 1.

Таблица 1. Оптические свойства растворов 1 и 2 в толуоле.

Соед.	ε, М ⁻¹ см ⁻¹	φ	λ_{max}^{em} , HM	Eg ^{opt} , 3B	λ _{max} ^{abs(em)} — максимум поглощения
	$(\lambda_{\max}^{abs}, HM)$				(люминесценции). ф — квантовый
1a	30000 (483)	0.21	584	2.32	выход в растворе.
1b	20000 (462)	0.28	551	2.44	Ед ^{орт} — зазор между НСМО и
1c	22000 (402)	0.10	537	2.58	ВЗМО, полученный из края спектра
2a	33000 (530)	*	*	2.04	поглощения.
2b	7000 (508)	*	*	2.15	*Для соединений 2a и 2b получить
2c	18000 (430)	0.05	610	2.32	экспериментально спектры
					люминесценции не удалось.

Соединения 1а и 2а имеют очень низкую растворимость в основных растворителях, из-за чего было невозможно получить пленку приемлемого качества. В спектрах поглощения тонких пленок 1b,с и 2b,с (рис. 3) наблюдается ожидаемое уширение линий по сравнению с растворами. Значения коэффициентов экстинкции соединений 1b,с и 2b,с в пленке были найдены из ур. 1.

$$D = e^{-\alpha l},\tag{1}$$

где D — оптическая плотность, α — коэффициент экстинкции, l — толщина пленки. Для соединений с флуореновым линкером наблюдается наибольший коэффициент экстинкции (табл. 2), причем при введении малононитрильных групп он увеличивается, что может быть связано с разной степенью сопряжения *π*-системы в молекулах.

Таблица 2. Оптические свойства пленок чистых 1b,с и 2b,с и их композитов с P3HT.

Соед.	α, см ⁻¹ (λ_{max} ,	$QY (QY$ в композите с $\lambda_{возб}$, нм		λ _{тах} — максимум
	нм)	РЗНТ, QY в композите		поглощения.
		после отжига), %		QY — квантовый выход в
				пленке.
1b	88000 (488)	1.5 (<0.01, 0.2)	500	λ _{возб} — длина волны
1c	77000 (417)	0.54 (, 0.4)	520 (540, 510)	возбуждения.
РЗНТ	70000 (550)	2.5 (,)	550	
2b	58000 (532)	1.9 (0.5, 0.6)	550	

2c	39000 (445)	2.4 (0.5, 1.0)	450 (510, 530)	

Рисунок 3. Нормированные спектры поглощения и люминесценции тонких пленок чистых 1b,с и 2b,с (черная линия), композитов с P3HT (красная линия), отожженных при 140 °C композитов с P3HT (синяя линия) и пленки P3HT до термического отжига (средняя панель, черная линия) и после (средняя панель, синяя линия).

При смешении AT 1b,с и 2b,с с P3HT спектры поглощения являются суперпозицией спектров чистых соединений и наличие новых полос поглощения не обнаружено. Интересно, что после термического отжига усиливаются все линии поглощения в диапазоне 400–650 нм в случае композитов P3HT/1b,с, и для P3HT/1c эффект максимален. Мы предполагаем, что это связано с очень интенсивным разделением фаз — размер фаз становится сопоставимым с пучком лампы спектрофотометра (рис. 5d и 5h).

Также были получены спектры люминесценции тонких пленок (рис. 3). Длина волны возбуждающего света отвечала максимуму длинноволновой полосы поглощения. В спектрах пленок чистых соединений наблюдается одна широкая линия, в РЗНТ — две линии. В композитах было зарегистрировано тушение люминесценции относительно чистых соединений и так как квантовый выход практически во всех случаях не равен нулю, то имеет место конкуренция двух процессов — безызлучательная диссоциация экситонов при достижении границы раздела фаз и излучательная рекомбинация экситонов в основное состояние. Интересно, что спектры люминесценции композитов P3HT с 1с, 2b,с очень P3HT. похожи на спектр люминесценции Потому было выдвинуто предположение, что все экситоны, родившиеся в фазе акцептора, могут достигнуть границы раздела фаз, а в фазе донора — нет. Но в случае P3HT/1b ситуация иная, что может быть связано с большим размером фаз донора и акцептора.

Наличие тушения люминесценции подтверждает факт диссоциации фаз донор/акцептор. Спектроскопия экситонов на границе раздела светоиндуцированного электронного парамагнитного резонанса (LEPR) позволяет подтвердить, что произошло разделение зарядов в композите под действием света (рис. 4).

Рисунок 4. Светоиндуцированные ЭПР спектры композитов AT 1b,с и 2b,с с РЗНТ. Источник возбуждения — галогеновая лампа.

Для всех композитов P3HT/AT были зарегистрированы LEPR спектры (разница спектров под светом и в темноте). В спектрах P3HT/1b,с наблюдаются

две линии: высокопольная линия, соответствующая катион-радикалу P3HT^{+•} (gфактор = 2.0022 ± 0.0003), и низкопольная линия, соответствующая анионрадикалу AT⁻. В случае P3HT/2b,с наблюдается одна линия, причем в первом более высокой интенсивностью. случае с намного По-видимому, малононитрильные группы уменьшают g-фактор акцептора, в связи с чем результирующая линия является суперпозицией линий катион- и анион-радикала с близкими значениями g-фактора. Стоит также отметить, что интегральная интенсивность LEPR спектра P3HT/2с в 10 раз больше, чем в P3HT 1с. Разница энергий НСМО полимера и 2с больше, чем полимера и 1с, таким образом, эффективность переноса электрона больше, из-за чего и наблюдается увеличение интенсивности в композите с модифицированным акцептором.

На поверхности пленки 1b имеют место впадины, что встречается довольно часто, если толщина не большая (~10 нм в данном случае) или при нанесении использовались растворы с высокой вязкостью, из-за чего остаются пустоты от паров растворителя. Но по фазовому изображению и значению шероховатости (RMS) можно заметить, что поверхность очень ровная, хоть и имеются очень маленькие кристаллические вкрапления. В случае 1с имеется более неровная волнообразная структура. При смешении с полимером наблюдается достаточно рельефная поверхность, с размером фаз порядка 80 нм. Мы предполагаем, что светлые зоны соответствуют доменам акцептора, а темные — доменам донора (рис. 5).

Рисунок 5. Изображения с атомно-силового микроскопа тонких пленок : a) 1b; b) P3HT/1b; c) P3HT/1b, отожженный; d) изображение с оптического микроскопа пленки P3HT/2b после отжига; e) 1c; f) P3HT/1c; g) P3HT/1c, отожженный; h) изображение с оптического микроскопа пленки P3HT/1c после отжига.

После термического отжига при 140 °С наблюдалось разделение фаз. Однако масштаб этого явления не был ожидаемым. Фон композитов с 1b и 1c является очень ровным, что свойственно РЗНТ, но, по-видимому, смешиваемость донора и данных акцепторов на молекулярном уровне очень низкая. Ввиду этого наблюдаются достаточно большие структуры, по форме похожие на крючки, а в случае 1с имеет место полное разделение фаз, которое можно увидеть невооруженным глазом: размер фаз РЗНТ составляет порядка 1мм, из-за чего ОФЭ на основе соединений 1 не изготавливались.

Композиты на основе соединений 2 являются устойчивыми к термическому воздействию (рис. 6). Топология пленок чистых соединений очень похожа на предыдущий случай с низкими значениями шероховатости. При смешении с донором наблюдается равномерное разделение фаз по всей площади с размерами ~ 50 и 190 нм для 2b и 2c соответственно. Данные композиты оказались термически стойкими и, по-видимому, 2c имеет схожую тенденцию к увеличению размера, как и 1c. Но теперь удалось получить более стойкую к нагреву поверхность и тем самым закристаллизовать домены P3HT.

Рисунок 6. Изображения с атомно-силового микроскопа тонких пленок: a) 2b; b) P3HT/2b; c) P3HT/2b, отожженный; d) 2c; e) P3HT/2c; f) P3HT/2c, отожженный.

были изготовлены фотовольтаические устройства в Далее, прямой архитектуре ITO/PEDOT:PSS/Активный слой/PFN/FM, где ITO — оксид индияолова (анод), PEDOT:PSS — дырочно-проводящий слой, PFN — электронпроводящий слой и FM — сплав Филда (катод). Обычно для нанесения верхнего электрода применяется методика вакуумного напыления, использование которой энерго- и времязатратным процессом. Для ускорения процесса является вариаций безвакуумного используется одна ИЗ изготовления электрода (разработанная в лаб. ХФСР ИХКГ СО РАН), при котором расплавленный и нагретый до ~110 °C сплав Филда наносится с помощью стеклянного шприца поверх всех слоев. После этого были зарегистрированы вольт-амперные характеристики ОФЭ, где в качестве акцепторов использовались PC60BM, 2b, 2c (рис. 7).

Рисунок 7. Вольт-амперные кривые ОФЭ на основе РС60ВМ (слева) и АТ 2b и 2c (справа). Источник возбуждения — светодиод CREE XM-L U3 с цветовой температурой 5000 К.

Для лучшего устройства на основе P3HT/PC60BM были получены значения напряжения холостого хода (Voc), тока короткого замыкания (Jsc), фактора заполнения (FF) и коэффициента фотоэлектрического преобразования (КФП) равными соответственно 0.444 B, 5.81 мА/см², 43.8 % и 1.13 %. Для наиболее производительных на основе 2b и 2c Voc: 77 мВ и 22 мВ, Jsc: 0.061 мА/см² и 0.017 мА/см², FF: 34.3 % и 34.5 % и КФП: 0.001 % и <0.001 % соответственно. Меняя соотношение донора и акцептора, толщину пленки, температуру отжига или вовсе не применяя его, мы не смогли улучшить вольт-амперную характеристику (ВАХ) ОФЭ с АТ 2b,с. Было предположено, что из-за плохой смешиваемости компонентов наблюдается такая низкая производительность ячеек. В связи с этим, мы решили поменять донорный полимер "старого" поколения на более перспективный — PCDTBT. К плюсам этого донора можно отнести более высокую дырочную проводимость, практически 100% внутреннюю квантовую эффективность. Минусами являются относительно низкая растворимость (максимальная 20-25 мг/мл при использовании ультразвукового щупа) и образование аморфной фазы.

PCDTBT обладает более широким спектром поглощения за счет более близко расположенных граничных орбиталей ("low-bandgap" полимер, рис. 8).

Рисунок 8. Спектры поглощения пленок чистых 2b и 2c, а также их композитов с P3HT и PCDTBT, нанесенных из хлорбензола.

Можно заметить, что PCDTBT имеет более широкий спектр поглощения, чем P3HT, и еще один пик в области 400 нм. Таким образом, есть вероятность образовать большее количество пар свободных зарядов.

Поверхность пленок PCDTBT/2b,с является очень ровной с ярко выраженными доменами AT (рис. 9). Размер этих доменов составляет ~ 35 и 60 нм, соответственно для композитов, содержащих 2b и 2c. Как и в случае P3HT, здесь также наблюдается повышенный размер фаз 2c по отношению к 2b, что должно негативно сказаться на общей производительности ячеек. В то же время, по-видимому, AT смешиваются лучше с PCDTBT, чем с P3HT, так как шероховатость поверхностей уменьшилась. После термического отжига ситуация практически не меняется, и размер фаз акцептора становится немного больше (~ 80 и 100 нм).

Рисунок 9. Изображения с атомно-силового микроскопа пленок: а) PCDTBT/2b; b) PCDTBT/2b, отожженный; c) PCDTBT/2c; d) PCDTBT/2c, отожженный.

После изготовления солнечных ячеек в прямой архитектуре ITO/PEDOT:PSS/Активный слой/PFN/FM, в которой активный слой не отжигался,

получилось повысить КФП ОФЭ, однако, вольт-амперная кривая выгнулась в обратную сторону (рис. 10).

Рисунок 10. ВАХ ОФЭ на основе PCDTBT/PC60BM (слева) и PCDTBT/2b,с (справа). Источник возбуждения — светодиод CREE XM-L U3 с цветовой температурой 5000 К.

Для лучшего устройства с PCDTBT/PC60BM получились следующие параметры: Voc = 0.96 мB, Jsc = 6.66 мA/cм², FF = 31.3 %, K $\Phi\Pi$ = 2.00 %, а для ячеек с 2b и 2c соответственно Voc — 0.853 B и 0.761 B, Jsc — 0.307 мA/cм² и 0.201 мA/cм², FF — 18.1 % и 18.6 %, К $\Phi\Pi$ — 0.047 % и 0.028 %. Таким образом, нам удалось повысить напряжение холостого хода более, чем в 10 раз, ток короткого замыкания — в 5 раз, но фактор заполнения упал, стал менее 25 %. Мы предполагаем, что в случае P3HT/2b,с низкое значение Jsc может быть связано с очень сильным разделением фаз в композите, что приводит значительному уменьшению образующихся зарядов. В случае же PCDTBT/2b,с имеет место более высокое значение тока короткого замыкания, однако фактор заполнения очень низок. Такое явление наблюдается, когда затрудняется экстракция зарядов на электрод и присутствует сильная рекомбинация зарядов на границе активного слоя и электрода.

Таким образом, модификация молекул посредством введения малононитрильных групп приводит к уширению спектру оптического поглощения, более эффективному разделению зарядов и смешиваемости с полупроводящими полимерами. В то же время, использование п-фениленового линкера могло бы привести к большим значениям КФП, однако растворимость соединений с таким линкером резко уменьшается. Молекулы с флуореновым центром по всем физико-химическим показателям превосходят молекулы с мфениленовым мостиком, по-видимому, за счет более сопряженной *л*-системы.

Глава 2. Фотовольтаические свойства композитов на основе линейных антратиофенов

В ходе синтетической части работы оказалось возможным создание не только ангулярной структуры антратиофенового фрагмента, а также линейной (рис. 11).

Рисунок 11. Структуры соединений 3 и 4 (сверху) и центральных *π*-линкеров (снизу): а — п-фениленовый, b — флуореновый, с — м-фениленовый..

Как и ранее, были изучены основные свойства соединений в виде растворов, пленок и композитов с проводящим полимером — PCDTBT, причем композиты были изготовлены на основе модифицированных АТ 4, благодаря их лучшей смешиваемости с полимером. В случае соединений 3 (рис. 12а, табл. 3) наблюдается батохромный сдвиг спектра поглощения в ряду с→b→a. При замещении карбонильных групп на малононитрильные (рис. 12b) данная особенность также имеет место и сдвиг становится сильнее, что связано с

уменьшением энергии НСМО и, следовательно, зазора между граничными орбиталями. В тонких пленках 4b,с наблюдается уширение полос поглощения по отношению к спектрам растворов, происходящее из-за увеличения межмолекулярного взаимодействия и образования агрегатов (рис. 12с). Пленки 4a были нанесены из хлороформа, так данное соединение нерастворимо в хлорбензоле. Таким образом, мы смогли получить пленки толщиной 2-3 нм. В композитах PCDTBT/4 спектры поглощения являются суперпозицией спектров чистых соединений, причем, как и в случае AT 4, наблюдается батохромный сдвиг длинноволновой полосы поглощения (рис. 12d).

Рисунок 12. Нормированные спектры оптического поглощения a) растворов 3 в хлорбензоле, b) растворов 4 в хлорбензоле, c) пленок чистых 4, d) композитов 4 с PCDTBT.

Τ Γ Γ Γ	\ <u>v</u>		A T
$1 a 0 \pi u \pi a + ($	лтические своиства	растворов и пленок	синтезированных А Г
т uoлпци э. с		puerbopon in inferior	

Соед.	$\epsilon, M^{-1}cM^{-1}(\lambda_{max})$	h, нм	α , cm ⁻¹ (λ_{max})	Eg, эВ	ε, М ⁻¹ см ⁻¹ (λ _{max}) — коэффициент
3a	43400 (319)			2.48	экстинкции в растворе на длине
3b	47600 (388)			2.58	волны максимума поглощения.
3c	76200 (312)			2.74	h — толщина пленки.
4a	20200 (348)	2-3	106000 ± 18000	2.07	α, см ⁻¹ (λ _{max}) — коэффициент
			(391)		экстинкции в пленке на длине волны

4b	57200 (398)	25-28	102000 (391)	2.17	максимума поглощения.
4c	13470 (359)	16-18	79000 (360)	2.28	Eg — зазор между НСМО и ВЗМО,
					полученный из края спектра
					поглощения

Далее, мы изучали свойства модифицированных соединений 4. (рис. 13).

Рисунок 13. Изображения с атомно-силового микроскопа пленок: a) 4a, b) 4b, c) 4c, d) PCDTBT/4b, отожженный.

Значения шероховатостей равны 0.48, 0.20, 0.16 и 0.37 нм соответственно для пленок 4a, 4b, 4c и PCDTBT/4b. В случае 4a наблюдаются кристаллические структуры размером ~ 70 нм. Для 4b и 4c характерна поверхность с низким перепадом высот, HO, по-видимому, 4cсклонно образовывать нанокристаллические структуры, возможно в процессе нанесения и высыхания пленки. А такое явление может негативно сказаться на стабильности ОФЭ. Потому было решено приготовить композит донорного полимера PCDTBT с 4b. Размер фаз в таком композите составляет ~60-70 нм, что может иметь негативный эффект на диссоциации экситонов. В данном случае мы использовали термический который морфологию отжиг, не повлиял на на микросубмикрометровом масштабе, но повлиял на твердость активного слоя при нанесении верхнего электрода, о чем несколько слов будет сказано в конце главы.

линейного антратиофена были Для демонстрации потенциала 4b изготовлены ОФЭ в традиционной архитектуре ITO/PEDOT:PSS/Активный слой/FM. Полученные вольтамперные характеристики ОФЭ на основе РСДТВТ/РС60ВМ и РСДТВТ/4b представлены на рис. 14.

Рисунок 14. Вольтамперная характеристика ОФЭ на основе PCDTBT/PC60BM (сверху) и PCDTBT/4b (снизу). Источник возбуждения светодиод CREE XM-L U3 с цветовой температурой 5000 К.

Для лучшего устройства, содержащего фуллерен, были получены Jsc, Voc, FF и КФП равными 13.1 мА/см², 0.831 B, 39.1 %, 4.25 % соответственно. Однако при замене акцептора на 4b значения получились 3.14 мА/см2, 0.785 B, 28.3 % и 0.71 %. Меньшее значение напряжения холостого хода объяснимо разницей энергий уровней ВЗМО донорного полимера и НСМО акцептора (3.97 эВ для 4b и 3.7 эВ для РС60ВМ), что создает меньшую движущую силу внутри устройства. И в то же время значения тока короткого замыкания и фактора заполнения для солнечных ячеек с РС60ВМ больше, чем с 4b. Казалось бы, коэффициент экстинкции 4b больше, чем у РС60ВМ, морфология поверхности достаточно благоприятна для разделения зарядов и транспорта в активном слое. Таким образом, мы предполагаем, что ухудшение производительности ОФЭ на основе соединений 4 по отношению к фуллерен-содержащим композитам вызвано низкой подвижностью заряда в фазе акцептора, что создает несбалансированный транспорт зарядов в толще активного слоя, что и привело к снижению Jsc (низкая скорость транспорта зарядов) и FF (наличие рекомбинации на границе с верхним электродом). Интересно, что, не отжигая активный слой, мы не смогли зарегистрировать вольт-амперную кривую, но получили лишь график линейной зависимости тока от напряжения, что говорит о наличии «пробоев» с катода на анод, то есть имеется очень низкое параллельное (шунтирующее) сопротивление. По-видимому, это связано с наличием пустот в мокрой пленке, а после отжига данные пустоты заполняются компонентами активного слоя.

Выводы и практические результаты

1. Была отработана методика безвакуумного изготовления органических солнечных элементов в реальных условиях. Для сравнения полученных данных были изготовлены фотовольтаические устройства на основе модельных композитов P3HT/PC60BM и PCDTBT/PC60BM;

2. Наличие флуоренового центра в молекуле приводит к уширению спектра оптического поглощения, увеличению эффективности разделения заряда и уменьшению размера фаз, по отношению к м-фениленовому, что благоприятно влияет на производительность конечного фотовольтаического устройства;

3. Модификация антратиофенов фрагментов малононитрильными группами приводит к: уширению спектра поглощения И увеличению коэффициента экстинкции, морфологической стабильности композитов к термическому отжигу, увеличению эффективности разделения зарядов в тонких пленках;

4. Показано, что линейная структура антратиофенового фрагмента приводит к резкому увеличению КФП фотовольтаических устройств по отношению к ангулярным аналогам.

Статьи автора в научных журналах по теме диссертации

 Baranov D. S. A Concise and Efficient Route to Electron-Accepting 2,2'-[2,2'-Arenediylbis(11-oxoanthra[1,2-b]thiophene-6-ylidene)]dipropanedinitriles /
Baranov D. S., Uvarov M. N., Kazantsev M. S., Glebov E. M., Nevostruev D. A., Mostovich E. A., Antonova O. V., Kulik L. V. // European Journal of Organic Chemistry. — 2018. — № 19. — C. 2259-2266.

2. Невоструев Д. А. Фотовольтаические свойства электроноакцепторных 2,2'-[2,2'-арендиил-бис(11-оксоантра[1,2-b]тиофен-6-илиден)]дималононитрилов / Невоструев Д. А., Баранов Д. С., Зиновьев В. А., Сухих А. С., Кулик Л. В. // Журнал Физической Химии. — В печати

3. Baranov D. S. Synthesis of 2,2'-[2,2'-(arenediyl)bis(anthrax[2,3b]thiophene-5,10-diylidene)]tetrapropanedinitriles and their performance as nonfullerene acceptors in organic photovoltaics / Baranov D. S., Krivenko O. L., Kazantsev M. S., Nevostruev D. A., Kobeleva E. S., Zinoviev V. A., Dmitriev A. A., Gritsan N. P., Kulik L. V. // Synthetic Metals. — 2019. — № 255. — C. 116097.

Тезисы докладов автора по теме диссертации

1. Nevostruev D. A. Bis(dicyanothienoanthraquinoides) — novel promising acceptor materials for organic photovoltaics / Nevostruev D. A., Baranov D. S., Uvarov M. N., Glebov E. M., Zinoviev V. A., Kazantsev M. S., Antonova O. V., Kulik L. V. // 4th International Fall School on Organic Electronics (IFSOE2018), 16-21 September 2018, Moscow, Russia.

 Nevostruev D. A. Vacuum-free fabrication of photovoltaic cells based on PCDTBT and novel acceptor anthrathiophene molecules / Nevostruev D. A., Baranov D. S., Zinoviev V. A., Glebov E. M., Kazantsev M. S., Kulik L. V. // 15th International Conference on Organic Electronics (ICOE2019), 24-28 June 2019, Hasselt, Belgium.

3. Nevostruev D. A. Organic solar cells based on novel acceptor anthrathiophene molecules: vacuum-free fabrication / Nevostruev D. A., Baranov D. S., Zinoviev V. A., Glebov E. M., Kazantsev M. S., Kulik L. V. // International Conference on Organic Electronics (ORGEL2019), 23-29 September 2019, Novosibirsk, Russia.