Публикации в которых опубликованы результаты работ, представленных на конкурс научных работ 2022 г.

 


 1. Bazhin N.M., Standard and transformed values of Gibbs energy formation for some radicals and ions involved in biochemical reactions // Archives of Biochemistry and Biophysics, 2020, V. 686, № 15, 108282, doi.org/10.1016/j.abb.2020.108282, Q2.

 2. Bazhin N.M., Standard Values of the Thermodynamic Functions of the Formation of Ions in an Aqueous Solution and their Change during Solvation // J. Phys. Chem. A, 2020, V. 124, 11051−11060, doi.org/10.1021/acs.jpca.0c08737, Q2.


 1. Glebov E.M., Ruban N.V., Pozdnyakov I.P., Grivin V.P., Plyusnin V.F., Lvov A.G., Zakharov A.V., Shirinian V.Z. Mechanistic Aspects of Photoinduced Rearrangement of 2,3-Diarylcyclopentenone Bearing Benzene and Oxazole Moieties. J. Phys. Chem. A, 2018, V. 122, № 36, P. 7107-7117. DOI: 10.1021/acs.jpca.8b05212. Q2.

 2. Lazareva S.K., Glebov E.M., Nevostruev D.A., Lonshakov D.V., Lvov A.G., Shirinian V.Z., Zinovyev V.A., Smolentsev A.B. Fluorescence Modulation of Eosin Y in PMMA Film by Diarylethene Switching. Mendeleev Commun., 2019, V. 29, № 3, P. 285-287. DOI: 10.1016/j.mencom.2019.05.014. Q3.

 3. Lazareva S.K., Glebov E.M., Metelitsa A.V., Lvov A.G., Shirinian V.Z., Gregova-Trencanova M., Velic D., Smolentsev A.B. Modulation of Diarylethene Fluorescense by Photochromic Switch and Solvent Polarity. Mendeleev Commun., 2019, V. 29, № 5, P. 564-566. DOI: 10.1016/j.mencom.2019.09.029. Q3.

 4. Glebov E.M., Pozdnyakov I.P., Semionova V.V., Lonshakov D.V., Lvov A.G., Shirinian V.Z., Melnikov A.A., Chekalin S.V. Primary Processes in Photochemistry of 2,3-bis(2,5-dimethylthiophen-3-yl)cyclopent-2-enone. Mendeleev Commun., 2020, V. 30, № 1, P. 61-63. DOI: 10.1016/j.mencom.2020.01.020. Q3.

 5. Oplachko M.V., Smolentsev A.B., Magin I.M., Pozdnyakov I.P., Nichiporenko V.A., Grivin V.P., Plyusnin V.F., Vyazovkin V.L., Yanshole V.V., Parkhats M.V., Yadykov A.V., Shirinian V.Z., Glebov E.M. Mechanism of Photochromic Transformations and Photodegradation of an Asymmetrical 2,3-Diarylcyclopentenone. Phys. Chem. Chem. Phys. 2020, V. 22, № 9, P. 5220-5228. DOI: 10.1039/C9CP05744G. Q1.

 6. Glebov E.M., Semionova V.V., Lazareva S.K., Smolentsev A.B., Fedunov R.G., Shirinian V.Z., Lvov A.G. Solvent dependent photoswitching and emission of diarylethenes with a π-conjugated push-pull system. J. Lumin., 2022, V. 241, Article 118472. https://doi.org/10.1016/j.jlumin.2021.118472 Q2.

 7. Орлиогло Б.М., Коваленко К.А., Глебов Е.М. Соединения включения органических азохромофоров в полости металл–органических координационных полимеров (Cr, Al)-MIL-101: синтез и фотохимические исследования. Журн. Структ. Химии, 2022, Т. 63, № 1, С. 87-98. DOI: 10.26902/JSC_id87100. [B.M. Orlioglo, K.A. Kovalenko, E.M. Glebov. Inclusion Compounds of Organic Azochromophores in the Cavities of Metal-Organic Frameworks (Cr, Al)-MIL-101: Synthesis and Photochemical Studies. J. Struct. Chem., 2022, V. 63, № 1, P. 152-163 (Engl. Transl.). DOI: 10.1134/S0022476622010152]. Q4.

 8. Семионова В.В., Глебов Е.М. Супрамолекулярные соединения, образованные металл-органическими координационными полимерами и органическими фотохромами (обзор). Журн. Структ. Химии 2022, Т. 63, № 9, 97937 (С. 1-32). DOI: 10.26902/JSC_id97937. Постоянная ссылка на статью https://jsc.niic.nsc.ru/article/97937 [V.V. Semionova, E.M. Glebov, Supramolecular Compounds Formed by Metal-Orginic Framework and Organic Photochromes. Review. J. Struct. Chem., 2022, V. 63, № 9, P. 1453-1483 (Engl. Transl.)]. DOI: 10.1134/S0022476622090086. Q4.


 1. Zarko V., Kiskin A., Cheremisin A. Contemporary methods to measure regression rate of energetic materials: A review. // Progress in Energy and Combustion Science (2022) 91,10098. https://doi.org/10.1016/j.pecs.2021.100980 (JSR=35.339, Qtop).

 2. Vladimir Zarko, Anatoly Glazunov. Review of Experimental Methods for Measuring the Ignition and Combustion Characteristics of Metal Nanoparticles. Nanomaterials 2020, 10(10), 2008; https://doi.org/10.3390/nano10102008. (JSR=4.24, Q1).

 3. Wei-Qiang Pang, Richard A. Yetter, Luigi T. DeLuca, Vladimir Zarko, Alon Gany, Xiao-Hong Zhang. Boron-based composite energetic materials (B-CEMs): preparation, combustion and applications. Progress in Energy and Combustion Science (2022) 93, 101038 https://doi.org/10.1016/j.pecs.2022.101038 (JSR=35.339, Qtop).

 4. Zarko V.E., Knyazeva A.G. (2020) Current Problems in Energetic Materials Ignition Studies. In: Pang W., DeLuca L., Gromov A., Cumming A. (Eds). Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore. https://doi.org/10.1007/978-981-15-4831-4_4 pp. 67-108.


 1. N.V. Muravyev, M.V. Gorn, I.N. Melnikov, K.S. Monogarov, B.L. Korsunskii, I.L. Dalinger, A.N. Pivkina, V.G. Kiselev, Autocatalytic Decomposition of Energetic Materials: Interplay of Theory and Thermal Analysis in the Study of 5-Amino-3,4-Dinitropyrazole Thermolysis. Phys. Chem. Chem. Phys. 2022, 24, 16325−16342. DOI: 10.1039/D1CP04663B. Q1 WOS.

 2. D.A. Chaplygin, A.A. Larin, N.V. Muravyev, D.B. Meerov, E.K. Kosareva, V.G. Kiselev, A.N. Pivkina, I.V. Ananyev, L.L. Fershtat, Nitrogen-Rich Metal-Free Salts: a New Look at 5‑(Trinitromethyl)tetrazolate Anion as an Energetic Moiety. Dalton Trans. 2021, 50, 13778–13785. DOI: 10.1039/D1DT02688G. Q1 WOS.

 3. N.V. Muravyev, K.A. Monogarov, I.N. Melnikov, A.N. Pivkina, V.G. Kiselev, Learning to Fly: Thermochemistry of Energetic Materials by Modified Thermogravimetric Analysis and Highly Accurate Quantum Chemical Calculations. Phys. Chem. Chem. Phys. 2021, 23, 15522–15542. DOI: 10.1039/d1cp02201f. Q1 WOS.

 4. S. Vaddypally, V.G. Kiselev, A.N. Byrne, C.F. Goldsmith, M.J. Zdilla, Transition-Metal-Mediated Reduction and Reversible Double-Cyclization of Cyanuric Triazide to an Asymmetric Bitetrazolate Involving Cleavage of the Six-Membered Aromatic Ring. Chem. Sci. 2021, 12, 2268–2275. DOI: 10.1039/d0sc04949b. Q1 WOS.

 5. M.V. Gorn, N.P. Gritsan, C.F. Goldsmith, V.G. Kiselev, Thermal Stability of Bis-Tetrazole and Bis-Triazole Derivatives with Long Catenated Nitrogen Chains: Quantitative Insights from High-Level Quantum Chemical Calculations. J. Phys. Chem. A 2020, 124, 7665−7677. DOI: 10.1021/acs.jpca.0c04985. Q2 WOS.

 6. M.V. Gorn, K.A. Monogarov, I.L. Dalinger, I.N. Melnikov, V.G. Kiselev, N.V. Muravyev, Pressure DSC for energetic materials. Part 2. Switching between evaporation and thermal decomposition of 3,5-dinitropyrazole. Thermochim. Acta 2020, 690, 178697. DOI: 10.1016/j.tca.2020.178697. Q2 WOS.

 7. M.V. Gorn, K.A. Monogarov, I.L. Dalinger, V.G. Kiselev, N.V. Muravyev, Thermal decomposition of nitropyrazoles: interplay of predictive electronic structure theory and thermal analysis // Proceedings of the 23rd Seminar on New Trends in Research of Energetic Materials (Eds. J. Pachman, J. Selesovsky), ISBN 978-80-7560-285-5, University of Pardubice, 2020, p.p. 56–65.

 8. V.G. Kiselev, N.V. Muravyev, K.A. Monogarov, P.S. Gribanov, A.F. Asachenko, I.V. Fomenkov, C.F. Goldsmith, A.N. Pivkina, N.P. Gritsan, Toward Reliable Characterization of Energetic Materials: Interplay of Theory and Thermal Analysis in the Study of the Thermal Stability of Tetranitroacetimidic Acid (TNAA). Phys. Chem. Chem. Phys. 2018, 20, 29285–29298. DOI: 10.1039/c8cp05619f. Q1 WOS.

 9. M.V. Shakhova (Gorn), N.V. Muravyev, N.P. Gritsan, V.G. Kiselev, Thermochemistry, tautomerism, and thermal decomposition of 1, 5-diaminotetrazole: A high-level ab initio study. J. Phys. Chem. A 2018, 122, 3939−3949. DOI: 10.1021/acs.jpca.8b01608. Q2 WOS.


 1. Shelepova, E. A., Paschek, D., Ludwig, R., Medvedev, N. N. Comparing the void space and long-range structure of an ionic liquid with a neutral mixture of similar sized molecules // Journal of Molecular Liquids, 2020, 299, 112121. DOI: 10.1016/j.molliq.2019.112121. Q1.

 2. Shelepova E.A., Ludwig R, Paschek D., Medvedev N.N. Structural similarity of an ionic liquid and the mixture of the neutral molecules // Journal of Molecular Liquids, 2021, 329, 115589. DOI:10.1016/j.molliq.2021.115589. Q1.

 3. Shelepova E.A., Medvedev N.N. Investigation of the intermolecular voids at the dissolution of CO2 in ionic liquids // Journal of Molecular Liquids, 2022, 349, 118127. DOI: 10.1016/j.molliq.2021.118127. Q1.

 4. Shelepova E.A., Medvedev N.N. Connection between empty volume and solubility of light gases in [CnMIM][NTf2] ionic liquids// Journal of Molecular Liquids, 2022, 120740. DOI: 10.1016/j.molliq.2022.120740. Q1.


1. Solovyev A.I., Mikheylis A.V., Plyusnin V.F., Shubin A.A., Grivin V.P., Larionov S.V., Tkachenko N.V., Lemmetyinen H. Photochemistry of dithiophosphinate Ni(S2P(i-Bu)2)2 complex in CCl4 Transient species and TD-DFT calculations // J. Photochem. Photobiol. A: Chem. 2019, 381, 111857 DOI:10.1016/j.jphotochem.2019.111857 Q2.

 2. Mikheylis A.V., Plyusnin V.F., Grivin V.P. Spectroscopy and Kinetics of Intermediates in Photochemistry of Xanthate Ni(S2COEt)2 Complex in CCl4 // J. Photochem. Photobiolog. A.: Chem., 2023, 435, 114260. DOI: 10.1016/j.jphotochem.2022.114260. Q2.

 3. Mikheylis A.V., Plyusnin V.F., Grivin V.P. Processes in Photochromic System Containing Xanthate (S2COEt)2 Disulfide and Xanthate Ni(S2COEt)2 Complex // J. Photochem. Photobiolog. A.: Chem., 2022, 429, 113899. DOI: 10.1016/j.jphotochem.2022.113899. Q2.


 1. Syutkin V.M., Vyazovkin V.L. Grebenkin S., Oxygen Diffusion in Glassy Poly(ethyl methacrylate): Spatial Correlation of Jump Rates // Macromolecules, 2021, V. 54, P. 10059–10067. DOI: 10.1021/acs.macromol.1c01183. Q1.

 2. Syutkin V.M., Vyazovkin V.L., Bol'shakov B.V., Grebenkin, S., On the Origin of Heterogeneous Diffusion in Glassy Poly(alkyl methacrylates) // J. Polym. Sci. Part B: Polym. Phys., 2019, V. 57, No. 17, P. 1097–1104. DOI: 10.1002/polb.24864. Q2.

 3. Bol'shakov B.V., Syutkin V.M., Vyazovkin V.L., Grebenkin S., Sorption of light gases in glassy poly(ethyl methacrylate) // J. Polym. Sci. Part B: Polym. Phys., 2018, V. 56, No. 4, P. 288–296. DOI: 10.1002/polb.24540. Q2.

 4. Большаков Б.В., Сюткин В.М., Сорбция кислорода стеклообразным полиэтилметакрилатом при низких температурах // Высокомолек. Соед. A., 2016, Т. 58, № 2, С. 188–198. DOI: 10.7868/S2308112016020036. Q4.


 1. O. Korobeinichev, A. Karpov, A. Shaklein, A. Paletsky, A. Chernov, S. Trubachev, R. Glaznev, A. Shmakov, S. Barbot’ko, Experimental and Numerical Study of Downward Flame Spread over Glass-Fiber-Reinforced Epoxy Resin // Polymers, 2022, 14, 911. doi:10.3390/polym14050911. Q1.

 2. O. Korobeinichev, A. Shaklein, S. Trubachev, A. Karpov, A. Paletsky, A. Chernov, E. Sosnin, A. Shmakov, The Influence of Flame Retardants on Combustion of Glass Fiber-Reinforced Epoxy Resin // Polymers, 2022, 14, 3379. doi:10.3390/polym14163379. Q1.

 3. O. Korobeinichev, A. Shmakov, A. Paletsky, S. Trubachev, A. Shaklein, A. Karpov, E. Sosnin, S. Kostritsa, A. Kumar, V. Shvartsberg, Mechanisms of the Action of Fire-Retardants on Reducing the Flammability of Certain Classes of Polymers and Glass-Reinforced Plastics Based on the Study of Their Combustion // Polymers, 2022, 14, 4523. doi:10.3390/polym14214523. Q1.

 4. A.Yu. Snegirev, E.A. Kuznetsov, O.P. Korobeinichev, A.G. Shmakov, S.A. Trubachev, Ignition and burning of the composite sample impacted by the Bunsen burner flame: A fully coupled simulation // Fire Safety Journal, 2022, 127, 103507. doi:10.1016/j.firesaf.2021.103507.Q2.

 5. S.A. Trubachev, O.P. Korobeinichev, A.I. Karpov, A.A. Shaklein, R.K. Glaznev, M.B. Gonchikzhapov, A.A. Paletsky, A.G. Tereshchenko, A.G. Shmakov, A.S. Bespalova, H. Yuan, W. Xin, H. Weizhao, The effect of triphenyl phosphate inhibition on flame propagation over cast PMMA slabs // Proceedings of the Combustion Institute, 2021, 38, 4635–4644. doi:10.1016/j.proci.2020.05.043. Q1.

 6. O.P. Korobeinichev, S.A. Trubachev, A.K. Joshi, A. Kumar, A.A. Paletsky, A.G. Tereshchenko, A.G. Shmakov, R.K. Glaznev, V. Raghavan, A.M. Mebel, Experimental and numerical studies of downward flame spread over PMMA with and without addition of tri phenyl phosphate // Proceedings of the Combustion Institute, 2021, 38, 4867–4875. doi:10.1016/j.proci.2020.07.082. Q1.

 7. S.A. Trubachev, O.P. Korobeinichev, S.A. Kostritsa, V.D. Kobtsev, A.A. Paletsky, A. Kumar, V.V. Smirnov, An insight into the gas-phase inhibition mechanism of polymers by addition of triphenyl phosphate flame retardant // AIP Conference Proceedings, 2020, 2304, 020019. doi:10.1063/5.0033887. Scopus.

 8. S. Trubachev, O. Korobeinichev, Gonchikzhapov, A. Paletsky, A. Shmakov, A.G. Tereshchenko, A. Karpov, Y. Hu, X. Wang, W. Hu, The Impact of DOPO and TPP Flame Retardants on Flame Spread over the Surface of Cast PMMA Slabs // Proceedings of the Ninth International Seminar on Fire and Explosion Hazards, 2019, 2, 767–775. doi:10.18720/spbpu/2/k19-38.

 9. A.A. Shaklein, A.A. Bolkisev, A.I. Karpov, O.P. Korobeinichev, S.A. Trubachev, Two-step gas-phase reaction model for the combustion of polymeric fuel // Fuel, 2019, 255, 115878. doi:10.1016/j.fuel.2019.115878. Q1.

 10. О.П. Коробейничев, И.Е. Герасимов, М.Б. Гончикжапов, А.Г. Терещенко, Р.К. Глазнев, С.А. Трубачев, А.Г. Шмаков, А.А. Палецкий, А.И. Карпов, А.А. Шаклеин, А. Кумар, В. Рагхаван, Экспериментальное исследование и численное моделирование распространения пламени по поверхности пластины ПММА // Пожаровзрывобезопасность/Fire and Explosion Safety, 2019, 28, 15–28. doi: 10.18322/PVB.2019.28.04.15-28.

 11. S.E. Yakush, O.P. Korobeinichev, A.G. Shmakov, T.A. Bolshova, S.A. Trubachev, A reduced kinetic scheme for methyl methacrylate gas-phase combustion // Combustion Theory and Modelling, 2022, 0, 1–14. doi:10.1080/13647830.2022.2132015. Q3.

 12. D. Shanmugasundaram, S.M. Kumaran, S.A. Trubachev, A. Bespalova, O.P. Korobeinichev, A.G. Shmakov, V. Raghavan, Burning characteristics and soot formation in laminar methyl methacrylate pool flames // Combustion Theory and Modelling, 2020, 24, 1153–1178. doi: 10.1080/13647830.2020.1822546. Q3.

 13. R.H.R. Ranga, O.P. Korobeinichev, V. Raghavan, A.G. Tereshchenko, S.A. Trubachev, A.G. Shmakov, A study of the effects of ullage during the burning of horizontal PMMA and MMA surfaces // Fire and Materials, 2019, 43, 241–255. doi:10.1002/fam.2692. Q4.

 14. R.K. Glaznev, A.I. Karpov, O.P. Korobeinichev, A.A. Bolkisev, A.A. Shaklein, A.G. Shmakov, A.A. Paletsky, M.B. Gonchikzhapov, A. Kumar, Experimental and numerical study of polyoxymethylene (Aldrich) combustion in counterflow // Combustion and Flame, 2019, 205, 358–367. 10.1016/j.combustflame.2019.04.032. Qtop.

 15. O. Korobeinichev, R. Glaznev, A. Karpov, A. Shaklein, A. Shmakov, A. Paletsky, S. Trubachev, Y. Hu, X. Wang, W. Hu, An experimental study and numerical simulation of horizontal flame spread over polyoxymethylene in still air // Fire Safety Journal, 2020, 111, 102924. Doi: 10.1016/j.firesaf.2019.102924. Q2.

 16. Lau, S.; Gonchikzhapov, M.; Paletsky, A.; Shmakov, A.; Korobeinichev, O.; Kasper, T.; Atakan, B. Aluminum Diethylphosphinate as a Flame Retardant for Polyethylene: Investigation of the Pyrolysis and Combustion Behavior of PE/AlPi-Mixtures // Combust. Flame, 2022, 240, 112006. 10.1016/j.combustflame.2022.112006. Q1.

 17. A. Snegirev, E. Kuznetsov, O. Korobeinichev, A. Shmakov, A. Paletsky, V. Shvartsberg, S. Trubachev, Fully Coupled Three-Dimensional Simulation of Downward Flame Spread over Combustible Material // Polymers (Basel), 2022, 14, 4136. Doi: 10.3390/polym14194136.Q1.

 18. Барботько С.Л., Боченков М.М., Вольный О.С., Коробейничев О.П., Шмаков А.Г., Оценка эффективности антипиренов, перспективных для создания новых полимерных композиционных материалов, предназначенных для авиационной техники // Труды ВИАМ, 2021, 2 (96), 20-29. 2021 Doi: 10.18577/2307-6046-2021-0-2-20-29, РИНЦ.


 1. Osipova K.N., Sarathy S.M., Korobeinichev O.P., Shmakov A.G. Chemical structure of premixed ammonia/hydrogen flames at elevated pressures // Combustion and Flame, 2022, 246, статья № 112419. DOI: 10.1016/j.combustflame.2022.112419. Qtop.

 2. Osipova K.N., Zhang X., Sarathy S.M., Korobeinichev O.P., Shmakov A.G. Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: Experimental and numerical study // Fuel, 2022, 310, статья № 122202. DOI: 10.1016/j.fuel.2021.122202. Q1.

 3. Osipova K.N., Korobeinichev O.P., Shmakov A.G. Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames // International Journal of Hydrogen Energy, 2021, 46 (80), pp. 39942-39954. DOI: 10.1016/j.ijhydene.2021.09.188. Q2.

 4. Osipova K.N., Sarathy S.M., Korobeinichev O.P., Shmakov A.G. Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study // Energy and Fuels, 2021, 35 (2), pp. 1760-1767. DOI: 10.1021/acs.energyfuels.0c03818. Q2.

 5. Osipova, K.N., Sarathy, S.M., Korobeinichev, O.P., Shmakov, A.G. Chemical structure of atmospheric pressure premixed laminar formic acid/hydrogen flames // Proceedings of the Combustion Institute, 2021, 38 (2), pp. 2379-2386. DOI: 10.1016/j.proci.2020.06.033 Qtop.

 6. Osipova K.N., Sarathy S.M., Korobeinichev O.P., Shmakov A.G. A study of the chemical structure of laminar premixed HC(O)OH/O2/Ar flames at 1 atm // AIP Conference Proceedings, 2020, 2304, статья № 0033838. DOI: 10.1063/5.0033838. Scopus.


 1. O.A. Shushakov, A.G. Maryasov. Bloch-Siegert effect in magnetic-resonance sounding // Appl Magn Reson. (2016) v.47, p.p. 1021-1032, DOI 10.1007/s00723-016-0809-1, Journal Impact Factor (2021-2022) - 0.831, Q4.

 2. O A Shushakov, A G Maryasov and A B Strelnikova. Remote magnetic resonance sounding for exploration of pore space microstructure and aquifer macrostructure // IOP Conf. Series: Earth and Environmental Science 33 (2016) 012058, doi:10.1088/1755-1315/33/1/012058, Scopus.

 3. O.A. Shushakov, Contribution of Electromagnetic Shielding and the Bloch–Siegert Effect to Magnetic-Resonance Sounding // Russian Geology and Geophysics, 2022, Vol. 63, No. 7, pp. 831–839, doi:10.2113/RGG20214345, импакт-фактор (2021-2022) – 1,206, Q4.

 4. О.А. Шушаков Электромагнитное экранирование и эффект Блоха—Зигерта в магнитно-резонансном зондировании // Геология и геофизика, 2022, т. 63, № 7, с. 1005—1015, DOI: 10.15372/GiG2021160, импакт-фактор (IF2021) – 1, 134, Q4.


 1. Glukhova SA, Yurkin MA. Vector Bessel beams: General classification and scattering simulations. // Phys. Rev. A 2022;106:033508. http://doi.org/10.1103/PhysRevA.106.033508 (IF = 2.971, Q2).

 2. Moskalensky AE, Yurkin MA. A point electric dipole: From basic optical properties to the fluctuation-dissipation theorem. // Rev. Phys. 2021;6:100047. http://doi.org/10.1016/j.revip.2020.100047 (not indexed in WoS, but is top 10% in Scopus, CiteScore = 20.5).

 3. Inzhevatkin KG, Yurkin MA. Uniform-over-size approximation of the internal fields for scatterers with low refractive-index contrast. // J. Quant. Spectrosc. Radiat. Transfer 2022;277:107965. http://doi.org/10.1016/j.jqsrt.2021.107965 (IF = 2.342, Q3).

 4. Yurkin MA. Fair evaluation of orientation-averaging techniques in light-scattering simulations: Comment on “Evaluation of higher-order quadrature schemes in improving computational efficiency for orientation-averaged single-scattering properties of nonspherical ice particles” by Fenni et al. // J. Geophys. Res. Atmos. 2022; in press:e2021JD036088. http://doi.org/10.1029/2021JD036088 (IF = 5.217, Q1).

 5. Feng X, Wang J, Teng S, Xu X, Zhu B, Wang J, Zhu X, Yurkin MA, Liu C. Can light absorption of black carbon still be enhanced by mixing with absorbing materials? // Atmos. Environ. 2021;253:118358. http://doi.org/10.1016/j.atmosenv.2021.118358 (IF = 5.755, Q1).